Reducing The Surface Area Of Risk In Data Security Using Data Masking

Tim Gorman | Delphix | Senior Technical Manager

PostgresConf US 2018

Jersey City / United States April 16 - 20, 2018

1. Fear and loathing

- 2. External and internal threats
- 3. Data masking
- 4. Summary

• The attitude of many is...

We have a firewall. We're good. Tough luck for those other folks...

- In the 1930s, France built an enormous fortification known as the Maginot Line
 - It was designed specifically to prevent Germany from ever invading
 - Every military expert worldwide agreed that it was *impregnable*

Nous avons la ligne Maginot! Que peuvent faire les Boche?

• In 1940, Germany conquered France in 6 weeks

 Germany simply *bypassed* the Maginot Line and conquered France in 6 weeks

 Germany simply *bypassed* the Maginot Line and conquered France in 6 weeks

• Lessons learned:

 Germany simply *bypassed* the Maginot Line and conquered France in 6 weeks

- Lessons learned:
 - 1. Use multiple layers of defense
 - Do **not** rely on a single strong defense against a single threat

 Germany simply *bypassed* the Maginot Line and conquered France in 6 weeks

- Lessons learned:
 - 1. Use multiple layers of defense
 - Do **not** rely on a single strong defense against a single threat
 - 2. Create strongpoints and concentrate defenses within
 - Impossible to defend everything equally, so prioritize and focus

Agenda

- 1. Fear and loathing
- 2. External and internal threats
- 3. Data masking
- 4. Summary

How do we apply these lessons to prevent data breaches?

- 1. Layered defenses
 - a) Physical security of data center
 - b) Network security (firewalls)
 - c) Strong authentication to services and servers
 - d) Centralized rule-based authorization to services and servers
 - e) Encryption of data in-flight
 - f) Encryption of data at-rest
- 2. Reduce the surface area of risk
 - a) Prioritize and focus protection efforts on production systems
 - b) Mask (obfuscate) sensitive/confidential data in non-production systems

In addition to attacks from **external vectors**, there is growing realization about the nature of **insider threats**

- **90%** of organizations *feel vulnerable* to insider attack
 - The main enabling risk factors include...
 - too many users with excessive access privileges (37%)
 - an increasing number of devices with access to sensitive data (36%)
 - increasing complexity of information technology (35%)
- 53% *confirmed* insider attacks against their organization in the **previous 12 months**
 - Typically fewer than 5 attacks, but **27%** say insider attacks have become more frequent

Courtesy of: 2018 Insider Threat Report – Cybersecurity-Insiders.com and Crowd Research Partners

- For decades, there had been an unspoken *honor code* in place in IT...
 - In the US, the Sarbanes-Oxley Act of 2002 forcefully brought attention to this potential liability by imposing penalties for corporate malfeasance on the CEO and CFO
 - Similar laws in many countries
 - The Snowden debacle in 2013 demonstrated how low-level IT staff could abuse the honor code to cause a breach
- Reliance on this *honor code* is a liability
 - On the organization
 - On IT personnel
 - GDPR in the EU is the final nail in the coffin
- How do we minimize the risks?

 Non-production environments represent an enormous increase in the surface area of risk for exposure of sensitive production data

Production

Exposure

 Non-production environments represent an enormous increase in the surface area of risk for exposure of sensitive production data

Exposure

- **Encryption** is the process of encoding data in such a way that only authenticated and authorized parties can decrypt it
- Decryption = *reversible* obfuscation

ADVANTAGES

- Effective for sending data such as emails or files between two secured locations (*data in-flight*)
- Effective for protecting data in a production application (*data at-rest*)

- In non-production, developers and testers must be authorized to decrypt data to do their jobs
- What if they aren't really authorized to view sensitive data?

- Masking data in-flight is the obfuscation of data after it has been retrieved from storage at-rest
- Masking = *non-reversible* obfuscation

• SQL Server Dynamic Data Masking (DDM) is an example

- Encryption is the appropriate solution in production systems
 - *obfuscation* which is *reversible* upon *authorization*

- Masking data at-rest is the obfuscation of data within the database using SQL statements
- Masking = *non-reversible* obfuscation

ADVANTAGES

- Effective for obfuscating data in nonproduction systems by changing data atrest
- Allows provisioning non-production systems outside of secured authorized environments

• Delphix, IBM Optim, Informatica data masking are examples

- Encryption and masking in-flight are appropriate solutions in production systems
 - *obfuscation* which is *reversible* upon *authorization*
- Masking at-rest is the appropriate solution in nonproduction systems
 - *obfuscation* which is *never reversible*

- Database virtualization
 - For decades, non-production databases have been created using...
 - Database copies from production
 - Newly-created databases with generated data
 - Data virtualization technologies are now available
 - Thin-clone copies of databases sourced from production presented via networkattached storage
 - Allows DBAs to create TB-sized database copies in less than 10 minutes
 - Delphix, Windocks, Red Gate, Rubrik, Actifio, etc
 - So, by cloning production to create dozens or hundreds of copies for non-production...

...somewhere a security administrator is writhing in agony

Agenda

- 1. Fear and loathing
- 2. External and internal threats
- 3. Data masking at-rest
- 4. Summary

1	Masking at-rest must not be reversible
2	The results must be representative of the data source
3	Referential integrity must be maintained
4	 Only mask non-sensitive data if it can be used to infer sensitive data
5	Masking must be a repeatable process

According to Rich Mogull, Securosis

Build (vs Buy) has hidden costsTest data quality is low

- How much in-house expertise do we really have for obfuscating data?
- Are the scripts reusable? Across database platform? Across platform? Across all documents?
- How well has it been tested?
- Are we really serious about protecting confidential data? Or just checking off an item from a task list?

HOME GROWN SCRIPTS STORED PROCEDURE

- Build (vs Buy) has hidden costs
- Test data quality is low
- Hard to mask data consistently due to specific code per source

- More formal than scripts...
- Stored procedures? How many database platforms are covered?
- Stored procedures? Does this work on documents too?
- How well does this scale? Has it been tested for performance?
- How is referential integrity managed?

HOME GROWN SCRIPTS	Build (vs Buy) has hidden costsTest data quality is low
STORED PROCEDURE	Hard to mask data consistently due to specific code per source
ETL REPURPOSING	Point solution focused on data manipulation

- Obfuscating data is about *extracting* unmasked data, *transforming* data, and then *loading* masked data back, so this seems a natural evolution, but...
- Is there a "discovery" function embedded to ensure that all confidential data is identified?
- Is there an "audit" function to track when data was audited and if new data has been added since?

HOME GROWN SCRIPTS	Build (vs Buy) has hidden costsTest data quality is low
STORED PROCEDURE	Hard to mask data consistently due to specific code per source
ETL REPURPOSING	Point solution focused on data manipulation
ENTERPRISE DATA MASKING	ComprehensiveProfile, secure, and audit

- Dozens of data domains, and obfuscation algorithms for each domain pre-defined
- Custom domains, algorithms can be added
- Not a repurposed tool, nor designed to create a large services contract
- Consistently mask data on-premise; across data centers; the cloud; for files, RDBMS, or Mainframe
- Horizontally scales
- Integrated with the provisioning step of data virtualization
- Comprehensive solution

- Secure Lookup Algorithm
 - One of eight (8) data transformation frameworks pre-built into the Delphix masking engine
 - Patented proprietary encrypt / hash / modulus lookup algorithm, repeatable yet unbreakable
 - Used to assign a realistic value from a value selected from a pre-defined lookup table
 - The algorithm is irreversible and purposely creates collisions in the output values for added security
- Example
 - 1. Starting with original column value of "XYZ Holdings"
 - 2. original table has about 1000 distinct data values in the column
 - lookup table can be defined with 500 distinct data values
 - 3. Encrypt original value using AES 256 to "1Gq1159bm7aX2C3bBVMJ3uIg%="
 - 4. MD5 Hash of the encrypted result = "428618117"
 - 5. **428618117** mod 500 = 117
 - 6. Value within lookup table at entry 117 is "Standard Oil"

Agenda

- 1. Fear and loathing
- 2. External and internal threats
- 3. Data masking
- 4. Summary

Summary

- 1. Understand the different choices for data security and their use-cases...
 - 1. Encryption and masking in-flight are good obfuscation solutions for production environments
 - Where all users are authenticated and authorized by the application
 - Where sensitive data can only be temporarily obfuscated
 - 2. Data masking at-rest is the right solution for non-production environments
 - Irreversibly make sensitive data *inconsequential* from a security perspective
 - Remove the value from the asset
- 2. Data masking at-rest products...
 - Delphix DMSuite, IBM Optim, Informatica Data Masking, Red Gate Data Masker, and more...
- 3. Job titles/descriptions that didn't exist in 2016 or 2017...
 - Data masking specialist
 - Data protection and vulnerability management specialist

...but they exist now and they're going to be important going forward...

Tim.Gorman@Delphix.com @TimGormanTech

PostgresConf US 2018

Jersey City / United States April 16 - 20, 2018