
Distributing Queries the
Citus Way

Fast and Lazy

Marco Slot <marco@citusdata.com>

Citus is an open source extension to Postgres (9.6, 10, 11) for transparently
distributing tables across many Postgres servers.

What is Citus?

2 Marco Slot | Citus Data | PostgresConf US 2018

Coordinator

data_1

data create_distributed_table('data', 'tenant_id');

data_4

data_2

data_5

data_3

data_6

Citus uses hooks and internal functions to change Postgres’ behaviour and
leverage its internal logic.

How does Citus work?

3 Marco Slot | Citus Data | PostgresConf US 2018

Postgres

Citus
- planner
- custom scanSELECT …

standard_planner

There are different use cases that can take advantage of distributed
databases, in different ways.

Examples:
• Multi-tenant SaaS app needs to scale beyond a single server
• Real-time analytics dashboards with high data volumes
• Advanced search across large, dynamic data sets
• Business intelligence

Different use cases for scaling out

4 Marco Slot | Citus Data | PostgresConf US 2018

Layered planner accommodates different workloads.

Citus planner(s)

5 Marco Slot | Citus Data | PostgresConf US 2018

Router planner

Pushdown planner

Recursive (Subquery/CTE) planning

Logical planner

Multi-tenant OLTP

Real-time analytics, search

Real-time analytics, data
warehouse

Data warehouse

Layered planner accommodates different workloads.

Citus planner(s)

6 Marco Slot | Citus Data | PostgresConf US 2018

Query
Rate

Query
Time

Data
Size

Complex
App

Complex
Query

Users
Multi-tenant OLTP

Real-time analytics, search

Real-time analytics, data
warehouse

Data warehouse

Tables are automatically assigned to co-location groups, which ensure that
rows with the same distribution column value are on the same node.

This enables foreign keys, direct joins, and rollups (INSERT...SELECT) that
include the distribution column.

Co-located distributed tables

7 Marco Slot | Citus Data | PostgresConf US 2018

orders_1

products_1

Foreign keys

orders_2

products_2

 Joins

orders_3

products_3

Rollups

Reference tables are replicated to all nodes such that they can be joined with
distributed tables on any column.

Reference tables

8 Marco Slot | Citus Data | PostgresConf US 2018

orders_1

products_1

orders_2

products_2

orders_3

products_3

category_1 category_1 category_1

 Joins Joins Joins

How to be a “drop-in” distributed database

Router planner

9

Routable queries

Technical observation:

If a query has <distribution column> = <value> filters that
(transitively) apply to all tables, it can be “routed” to a particular node.

Efficiently provides full SQL support, since full query can be handled by
Postgres.

10

SELECT …

SELECT …

Routable queries

Technical observation:

If a query has <distribution column> = <value> filters that
(transitively) apply to all tables, it can be “routed” to a particular node.

Efficiently provides full SQL support, since full query can be handled by
Postgres.

11

Return

Use case observation:

In a SaaS (B2B) application, most queries are specific to a particular tenant.

Can add tenant ID column to all tables and distribute by tenant ID.

Most queries are router plannable:
Low overhead, low latency, full SQL capabilities of Postgres, scales out

Scaling Multi-tenant Applications

12 Marco Slot | Citus Data | PostgresConf US 2018

Can explicitly provide filters on all tables:

SELECT app_id, event_time
FROM (
 SELECT tenant_id, app_id, item_name
 FROM items
 WHERE tenant_id = 1783
)
LEFT JOIN (
 SELECT tenant_id, app_id, max(event_time) AS event_time
 FROM events
 WHERE tenant_id = 1783
 GROUP BY tenant_id, app_id
)
USING (tenant_id, app_id) ORDER BY 2 DESC LIMIT 10;

Router planner with explicit filters

13

All distributed tables have filters by the
same value

Citus can infer distribution column filters from joins:

SELECT app_id, event_time
FROM (
 SELECT tenant_id, app_id, item_name
 FROM items
 WHERE tenant_id = 1783
)
LEFT JOIN (
 SELECT tenant_id, app_id, max(event_time) AS event_time
 FROM events
 GROUP BY tenant_id, app_id
)
USING (tenant_id, app_id) ORDER BY 2 DESC LIMIT 10;

Router planner with inferred filters

14 Marco Slot | Citus Data | PostgresConf US 2018

Filter on orders can be inferred from
joins

Extracting relation filters

What does Citus need to do to infer filters?

Be lazy and call the Postgres planner:

 planner()
 -> citus_planner()
 -> standard_planner()

15 Marco Slot | Citus Data | PostgresConf US 2018

Obtain filters on all relation from Postgres planning logic

Make your workers work

Pushdown planning

16

Distributed queries

Technical observation:

Most common SQL features (aggregates, GROUP BY, ORDER BY, LIMIT)
can be distributed in a single round.

17

SELECT …

SELECT …

SELECT …

Distributed queries

Technical observation:

Most common SQL features (aggregates, GROUP BY, ORDER BY, LIMIT)
can be distributed in a single round.

18

Merge

Get the top 10 pages with the highest response times:

Merging query results

19

SELECT page_id, avg(response_time)
 FROM page_views

GROUP BY page_id
ORDER BY 2 DESC
LIMIT 10

Marco Slot | Citus Data | PostgresConf US 2018

Queries on shards when page_id is the distribution column:

Queries on shards

20 Marco Slot | Citus Data | PostgresConf US 2018

SELECT page_id, avg(response_time)
 FROM page_views_102008

GROUP BY page_id
ORDER BY 2 DESC
LIMIT 10

When page_id is the distribution column: get top 10 of top 10s.

Merging query results

21

SELECT page_id, avg
 FROM

ORDER BY 2 DESC
LIMIT 10

Marco Slot | Citus Data | PostgresConf US 2018

Concatenated results of queries on shards

Queries on shards when page_id is not the distribution column:

Queries on shards

22 Marco Slot | Citus Data | PostgresConf US 2018

SELECT page_id, sum(response_time),
 count(response_time)
 FROM page_views_102008

GROUP BY page_id

When page_id is not the distribution column: merge the averages

Merging query results

23

SELECT page_id, sum(sum) / sum(count)
FROM

GROUP BY page_id
ORDER BY 2 DESC
LIMIT 10

Marco Slot | Citus Data | PostgresConf US 2018

Concatenated results of queries on shards

Instead of a table, we can have joins or subqueries:

What about subqueries?

24

SELECT page_id, response_time
FROM (
 SELECT page_id
 FROM pages
 WHERE site = 'www.citusdata.com'
) p
JOIN (
 SELECT page_id, avg(response_time) AS response_time
 FROM page_views
 WHERE view_time > date '2018-03-20' GROUP BY page_id
) v
USING (page_id)
ORDER BY 2 DESC LIMIT 10;

http://www.citusdata.com

Distributed queries

Technical observation:

A query that joins all distributed tables by distribution column with
subqueries that do not aggregate across distribution column values
can be distributed in a single round.

25 Marco Slot | Citus Data | PostgresConf US 2018

Pushdown planner

Determine whether distribution columns are equal using Postgres planner:

SELECT page_id, response_time
FROM (
 SELECT page_id
 FROM pages
 WHERE site = 'www.citusdata.com'
) p
JOIN (
 SELECT page_id, avg(response_time) AS response_time
 FROM page_views
 WHERE view_time > date '2018-03-20' GROUP BY page_id
) v
USING (page_id)
ORDER BY 2 DESC LIMIT 10;

26 Marco Slot | Citus Data | PostgresConf US 2018

Distribution column equality

Pushdown planner

Subquery results need to be partitionable by distribution column:

SELECT page_id, response_time
FROM (
 SELECT page_id
 FROM pages
 WHERE site = 'www.citusdata.com'
) p
JOIN (
 SELECT page_id, avg(response_time) AS response_time
 FROM page_views
 WHERE view_time > date '2018-03-20' GROUP BY page_id
) v
USING (page_id)
ORDER BY 2 DESC LIMIT 10;

27 Marco Slot | Citus Data | PostgresConf US 2018

No aggregation across distribution
column values.

Pushdown planner

Subqueries can be executed across co-located shards in parallel:

28

 SELECT page_id, response_time
FROM (
 SELECT page_id
 FROM pages_102670
 WHERE site = 'www.citusdata.com'
)
JOIN (
 SELECT page_id, avg(response_time) AS response_time
 FROM page_views_102008
 WHERE view_time > date '2018-03-20' GROUP BY page_id
)
USING (page_id)
ORDER BY 2 DESC LIMIT 10;

Merge the results on the coordinator:

Merging query results

29

SELECT page_id, response_time
 FROM

ORDER BY 2 DESC
LIMIT 10

Marco Slot | Citus Data | PostgresConf US 2018

Concatenated results of queries on shards

Use case observation:

Real-time analytics dashboards need sub-second response time,
regardless of data size.

Single-round distributed queries are powerful, fast and scalable.

In practice:
• Maintain aggregation tables using parallel INSERT...SELECT
• Dashboard selects from the aggregation table

Scaling Real-time Analytics Applications

30 Marco Slot | Citus Data | PostgresConf US 2018

Complex subqueries

What about subqueries with merge steps?

SELECT
 product_name, count
FROM
 products
JOIN (
 SELECT product_id, count(*) FROM orders GROUP BY product_id
 ORDER BY 2 DESC LIMIT 10
) top10_products
USING (product_id)
ORDER BY count;

31 Marco Slot | Citus Data | PostgresConf US 2018

Have a query you can’t solve? Call the Postgres planner!

Recursive planning

32

Technical observation:

Subqueries and CTEs that cannot be pushed down can often be
executed as distributed queries.

Pull-push execution:
- Recursively call planner() on the subquery
- During execution, stream results back into worker nodes
- Replace the subquery with a function call that acts as a reference table

Recursive planning

33 Marco Slot | Citus Data | PostgresConf US 2018

Recursive planning

Separately plan CTEs and subqueries that violate pushdown rules:

SELECT
 product_name, count
FROM
 products
JOIN (
 SELECT product_id, count(*) FROM orders GROUP BY product_id
 ORDER BY 2 DESC LIMIT 10
) top10_products
USING (product_id)
ORDER BY count;

34 Marco Slot | Citus Data | PostgresConf US 2018

Recursive planning

In the outer query, replace subquery with intermediate result, treated as
reference table:

SELECT
 product_name, count
FROM
 products
JOIN (
 SELECT * FROM read_intermediate_result(...) AS r(product_id text, count int)
) top10_products
USING (product_id)
ORDER BY count;

35 Marco Slot | Citus Data | PostgresConf US 2018

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product_id, count(*) FROM orders GROUP BY product_id ORDER BY 2 DESC
LIMIT 10

36 Marco Slot | Citus Data | PostgresConf US 2018

SELECT …

SELECT …

SELECT …

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product_id, count(*) FROM orders GROUP BY product_id ORDER BY 2 DESC
LIMIT 10

37 Marco Slot | Citus Data | PostgresConf US 2018

Merge

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product_id, count(*) FROM orders GROUP BY product_id ORDER BY 2 DESC
LIMIT 10

38 Marco Slot | Citus Data | PostgresConf US 2018

Results

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product_name, count FROM products JOIN (SELECT * FROM
read_intermediate_result(...) …) …;

39 Marco Slot | Citus Data | PostgresConf US 2018

SELECT …

SELECT …

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product_name, count FROM products JOIN (SELECT * FROM
read_intermediate_result(...) …) …;

40 Marco Slot | Citus Data | PostgresConf US 2018

Merge

Different parts of a query can be handled by different planners.

Recursive planning

41

Router

Pushdownable

LocalPushdownable

SELECT ...

SELECT ...

SELECT ... SELECT ...

Technical observation:

Intermediate results of CTEs and subqueries are treated as reference
tables: can use any join column.

WITH
distributed_query AS (...)

SELECT
…
distributed_query JOIN distributed_table USING (any_column)
…

Joins between tables and intermediate results

42 Marco Slot | Citus Data | PostgresConf US 2018

Technical observation:

Queries with only intermediate results (CTEs or subqueries) are router
plannable: full SQL in a single round-trip.

WITH
distributed_query_1 AS (...),
distributed_query_2 AS (...)

SELECT
…
distributed_query_1 … distributed_query_2
…

Joins between intermediate results

43 Marco Slot | Citus Data | PostgresConf US 2018

Can use any SQL feature without
further merge steps

Use case observation:

Real-time analytics applications want versatile distributed SQL support

Recursive planning provides nearly full, distributed SQL support in a small
number of network round trips.

Scaling Real-time Analytics Applications

44 Marco Slot | Citus Data | PostgresConf US 2018

Handling non-co-located joins through relational algebra

Logical planner

45

Business intelligence queries may join on non-distribution columns.

SELECT
 product_id, count(*)
FROM
 shopping_carts JOIN products USING (product_id)
WHERE
 shopping_carts.country = 'US' AND products.category = 'Books'
GROUP BY
 product_id;

Non-co-located joins

46 Marco Slot | Citus Data | PostgresConf US 2018

Distributed by customer_id for fast
lookup of shopping cart

Distributed by product_id

Distributed query optimisation

Apply operations that reduce data size before re-partitioning.

47

Join by
product_id

Re-partition by
product_id

Filter:
country = 'US'

Table:
products

Table:
shopping_carts

GROUP BY:
product_id

Project
product_id

Join by
product_id

Re-partition by
product_id

Filter:
country = 'US'

Table:
products

Table:
shopping_carts

GROUP BY:
product_id

Project
product_id

GROUP BY:
product_id

Filter:
category = 'Books'

Filter:
category = 'Books'

Re-partitioning

Split query results into buckets based on product_id

SELECT partition_query_result($$
 SELECT product_id, count(*) FROM shopping_carts_1028 WHERE country = 'US'
 GROUP BY product_id
$$, 'product_id');

48

SELECT …

SELECT …

Re-partitioning

Fetch product_id buckets to the matching products shards.

SELECT fetch_file(...);

49

SELECT …

SELECT …

Re-partitioning

Join merged buckets with products table

SELECT product_id, count FROM fragment_2138 JOIN products_102008 USING
(product_id) WHERE products.category = 'Books';

50

SELECT …

SELECT …
x

x

x

x

x

x

Join order planning

Joins across multiple tables should avoid re-partitioning when unnecessary:

orders JOIN shopping_carts JOIN customers JOIN products

Bad join order:
orders x shopping_carts → re-partition by customer_id
join result x customers → re-partition by product_id
join result x products → query result

Good join order:
shopping_carts x customer → re-partition by product_id
join result x orders x products → query result

51 Marco Slot | Citus Data | PostgresConf US 2018

CitusDB: Joins, aggregates, grouping, ordering, etc.
Citus 5.0: Outer joins, HAVING (2016)
Citus 5.1: COPY, EXPLAIN
Citus 5.2: Full SQL for router queries
Citus 6.0: Co-location, INSERT...SELECT
Citus 6.1: Reference tables (2017)
Citus 6.2: Subquery pushdown
Citus 7.0: Multi-row INSERT
Citus 7.1: Window functions, DISTINCT
Citus 7.2: CTEs, Subquery pull-push (2018)
Citus 7.3: Arbitrary subqueries
Citus 7.4: UPDATE/DELETE with subquery pushdown

Evolution of distributed SQL

52 Marco Slot | Citus Data | PostgresConf US 2018

marco@citusdata.com

Thanks!

53

