
Understanding High Availability
options for PostgreSQL

Madan Kumar K
Member of Technical Staff, ScaleGrid.io

@ImMadanK

Copyright © ScaleGrid.io

➔ Standby Server

◆ Warm Standby

High Availability 101

❖ Standalone vs. Master-Standby

Copyright © ScaleGrid.io

➔ Master Server

◆ Hot Standby

★ Redundancy is the key

Streaming Replication

Copyright © ScaleGrid.io

❖ Built-in feature

❖ Uses
Write-Ahead
Logging (WAL)

❖ Types

➢ Async

➢ Sync

Managing High Availability

Copyright © ScaleGrid.io

★ Patroni

Framework Requirements

➔ Failure detection

➔ Failure recovery

➔ Automatic failover

➔ Consensus

❖ Replication Manager

❏ PostgreSQL Automatic
Failover (PAF)

Well-Known Frameworks

❖ Pacemaker + Corosync
stack

❖ HA management Solution
by Cluster Labs

PostgreSQL Automatic Failover

Copyright © ScaleGrid.io

❖ Written in Perl

❖ Open Cluster Framework
Compliant

❖ Pacemaker Resource
Agent

How PAF works?

➔ Elects the best available
Standby

Copyright © ScaleGrid.io

➔ Irrecoverable failure on
master? Failover

➔ Recover the Failure

➔ Pacemaker interaction

➔ Monitors status of each
node to detect failure

PAF: Setup Requirements

Copyright © ScaleGrid.io

❖ Hot Standby

➔ maxlag
◆ primary_conninfo (must

include
application_name)

❖ Streaming replication

❖ PostgreSQL 9.3 & above

◆ recovery_target_timeline

◆ standby_mode

★ Recovery template

➔ start_ops

➔ recovery_template

➔ pgport

➔ pgdata

➔ bindir

★ Custom Parameters

Replication Manager

Copyright © ScaleGrid.io

❖ Replication & failover
management tool suite by

❖ PostgreSQL Extension

❖ Written in C language

➔ Switchover

➔ Promote standby

➔ Setup standby

★ Command Line Tool

repmgr

➔ Event notification

➔ Failure detection

➔ Automatic failover

★ Daemon that actively
monitors servers

repmgrd

How repmgr works?

➔ Utilities to setup
replication

Copyright © ScaleGrid.io

◆ Tables & Views ➔ Event notification

➔ Primary and secondary
nodes registration

➔ repmgr schema

➔ Promote, Follow &
Switchover

➔ Rejoin cluster

➔ Automatic Failover

➔ repmgrd (shared preload
lib)

➔ \conninfo

repmgr: Setup Requirements

Copyright © ScaleGrid.io

➔ use_replication_slots➢ Copy config files

❖ PostgreSQL 9.3 & above

➢ Cluster crosscheck

➢ Switchover

❖ Passwordless ssh
connectivity between all
servers

➔ service specific
commands

➔ data_directory

➔ node_name

➔ node_id

★ repmgr conf

Patroni

Copyright © ScaleGrid.io

★ Callbacks

❖ HA solution template by

❖ Supports many Distributed
Configuration Store (DCS)

★ Dynamic configuration

★ REST API

★ Customizable standby
creation methods

How Patroni works?

➔ Rejoin using pg_rewind

Copyright © ScaleGrid.io

➔ Watchdog

➔ Automatic failover

➔ Patroni agent

➔ Leader lock using DCS

➔ Replica creation

➔ Initialize the cluster from
single node

➔ Callbacks

Patroni: Setup Requirements

Copyright © ScaleGrid.io

❖ Environment Config
settings
➢ To override values in

yaml config
➔ REST API

❖ Python module specific
to that DCS

❖ One of the DCS must be
installed.

➔ PostgreSQL

➔ DCS specific

➔ Bootstrap

➔ Global/Universal

★ YAML Configuration

Framework Comparison

❖ How they work in Distributed System? Consensus,
Network Split etc..

Copyright © ScaleGrid.io

❖ Interfaces & Utilities

❖ Failure detection & recovery.

❖ Features supported
➢ Ports
➢ Event notification
➢ Public IP based deployments

Master Failure

Copyright © ScaleGrid.io

★ Patroni restarts the master service in case of process
stop/kill.
○ If master doesn’t recover within master_start_timeout,

election is triggered.

❏ PAF restarts the master service in case of process stop/kill.
❏ Irrecoverable failure leads to election

❖ repmgr doesn’t restart the master service in case of process
kill/stop.
➢ Instead wait for fixed interval before triggering election
➢ Manual intervention is required.

Master Failure

Copyright © ScaleGrid.io

★ Patroni restarts the PostgreSQL service on Standby to
follow new master.

❏ PAF uses IP address failover to ensure Standby follows the
new master.

❖ repmgr restarts the PostgreSQL service on Standby to
follow new master.

Standby Failure

Copyright © ScaleGrid.io

★ Patroni restarts the standby service in case of process
stop/kill.

❏ PAF restarts the standby service in case of process stop/kill.

❖ repmgr doesn’t restart the standby service in case of
process kill/stop.
➢ Manual intervention is required.

pg_rewind support

★ Patroni support pg_rewind.
○ Automatically detects if rewind is required.

Copyright © ScaleGrid.io

❖ repmgr supports pg_rewind as part of node rejoin
command.

❏ PAF doesn’t support pg_rewind

Consensus Algorithm

★ Patroni supports various DCS and consensus algorithm will
be specific to that DCS.
○ Etcd and Consul uses RAFT
○ Zookeeper uses Zab

Copyright © ScaleGrid.io

❖ repmgr doesn’t have consensus algorithm.

❏ PAF uses Pacemaker + Corosync.
❏ Totem Single-Ring Ordering and Membership Protocol

Network Partitioning

★ Patroni demotes the PostgreSQL on the node which is
isolated from majority.

Copyright © ScaleGrid.io

❖ repmgr provides location parameter to address the
concern.
➢ In case of Split, Promotes the standby which has same

location value as of previous primary.
➢ if nothing is specified, “default” is the value for location. Can

lead to multi-master scenario.

❏ PAF stops the service on the node which is isolated from
majority based on Quorum policy.

Handling Lagging Standby

Copyright © ScaleGrid.io

★ Patroni has maximum_lag_on_failover parameter which will
ensure standby lagging behind that value will not be
considered for master election.

❖ repmgr doesn’t handle lagging standby separately.

❏ PAF exposes parameter maxlag, above which standby will
be set a negative master score.

Maintenance mode

Copyright © ScaleGrid.io

★ Patroni provides pause/resume to support maintenance
mode for resources.
○ Supports only for entire cluster

❖ repmgr doesn’t have maintenance mode.

❏ PAF supports putting resources in maintenance mode.
❏ Can be individual resource/single node/complete cluster

Ports usage

Copyright © ScaleGrid.io

★ Patroni uses minimum three extra ports.
○ One port for REST API
○ Minimal two for DCS.
○ Based on DCS being used number of ports can vary.

❖ repmgr doesn’t need any extra ports.

❏ PAF uses an extra UDP port (default: 5405) for corosync
communication.

NAT Support

Copyright © ScaleGrid.io

★ Patroni has no restrictions.

❖ repmgr has no restrictions.

❏ PAF uses corosync, hence it doesn’t support NAT/Public IP
with load balancer.

★ repmgr
★ Tables &

Views

★ patronictl
★ REST API

★ crmsh
★ pcsd

Interfaces and Utilities

Copyright © ScaleGrid.io

repmgr

PatroniPAF

Event Notification

Copyright © ScaleGrid.io

★ Patroni provides parameters to specify multiple scripts
based on event type.

❖ repmgr supports even notification by allowing single script
and passing arguments to it.

❏ PAF supports event notification using Alert agents.

Multi-Databases Support

Copyright © ScaleGrid.io

❏ PAF uses Pacemaker & Corosync Stack

❏ Easy maintenance

❏ Database specific Resource Agents

Questions?

You can reach me at
• @ImMadanK

• madan.kumar@scalegrid.io

Copyright © ScaleGrid.io

Agenda

Copyright © ScaleGrid.io

★ High Availability

★ PostgreSQL Streaming Replication

★ High Availability Management Frameworks

★ Frameworks Comparison

High Availability

Copyright © ScaleGrid.io

Availability % Downtime per year

90% ("one nine") 36.53 days

99% ("two nines") 3.65 days

99.9% ("three nines") 8.77 hours

99.99% ("four nines") 52.60 minutes

99.999% ("five nines") 5.26 minutes

99.9999% ("six nines") 31.56 seconds

★ Defined based on business requirements

★ Represented as series of 9’s.

★ Percentage of time the services are up in a given time period.

★ Ensures Operational continuity for higher than normal period.

Framework Agent Failure

Copyright © ScaleGrid.io

★ Patroni supports watchdog.
○ agent crash/not run due to high load
○ slow shutdown of PostgreSQL
○ Split brain protection

❏ PAF uses pacemaker whose failure/process kill will disable
resource management for that node.

❖ repmgrd failure/stop will disable that node from
participating in election.

