

Distributed Database Architecture for GDPR

Karthik Ranganathan PostgresConf Silicon Valley Oct 15, 2018

<mark>P Yuga</mark>Byte

About Us

Founders

Kannan Muthukkaruppan, CEO Nutanix • Facebook • Oracle IIT-Madras, University of California-Berkeley

Karthik Ranganathan, CTO Nutanix • Facebook • Microsoft IIT-Madras, University of Texas-Austin

Mikhail Bautin, Software Architect ClearStory Data Sacebook D.E.Shaw Nizhny Novgorod State University, Stony Brook

- ✓ Founded Feb 2016
- Apache HBase committers and early engineers on Apache Cassandra
- ✓ Built Facebook's NoSQL platform powered by Apache HBase
- ✓ Scaled the platform to serve many mission-critical use cases
 - Facebook Messages (Messenger)
 - Operational Data Store (Time series Data)
- Reassembled the same Facebook team at YugaByte along with engineers from Oracle, Google, Nutanix and LinkedIn

WHAT IS YUGABYTE DB?

A **transactional**, **planet-scale** database for building **high-performance** cloud services.

NoSQL + SQL

Cloud Native

Design Principles

TRANSACTIONAL

HIGH PERFORMANCE

Single Shard & Distributed ACID Txns

Low Latency, Tunable Reads

PLANET-SCALE

Global Data Distribution

Document-Based, Strongly **Consistent Storage**

High Throughput

Auto Sharding & Rebalancing

CLOUD NATIVE

Self-Healing, Fault-Tolerant

OPEN SOURCE

Apache 2.0

Popular APIs Extended Apache Cassandra, Redis and PostgreSQL (BETA)

PrugaByte

WHAT IS GDPR?

GDPR : <u>General</u> <u>Data</u> <u>Protection</u> <u>Regulation</u>

Citizens of EU can <u>control sharing and protection</u> of their <u>personal data</u> by businesses.

Personal Data, also called

PII (Personally Identifiable Information)

- User name
- Email address
- Date of birth

- Bank details
- Location details
- Computer IP address

Control over personal data

- Consent & data location
- Data privacy and safety
- Right to be forgotten
- Data access on demand
 - Database concerns

- Notify on data breach
- Data portability
- Ability to fix errors in data
- Restrict processing

Application concerns

#1 USER CONSENT AND DATA LOCATION

Data must be stored in EU by default. Businesses need explicit user consent to move it outside.

Why is this hard?

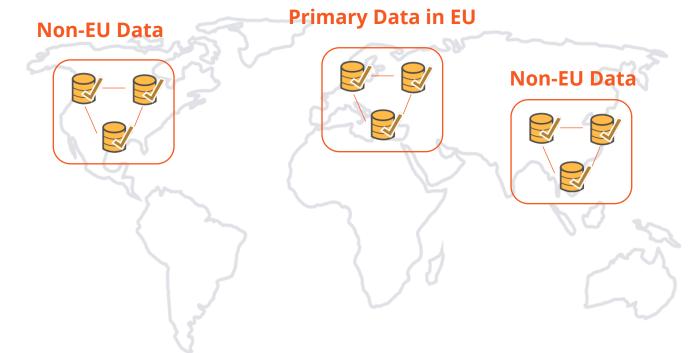
- EU user data lives in that region
- Other countries have compliance regulation more geo's
- Public clouds may not have coverage hybrid deployments
- Architecture depends on data multiple per service

Think Global Deployments first!

Example – online ecommerce site

• **Products** table needs globally replication – not PII data

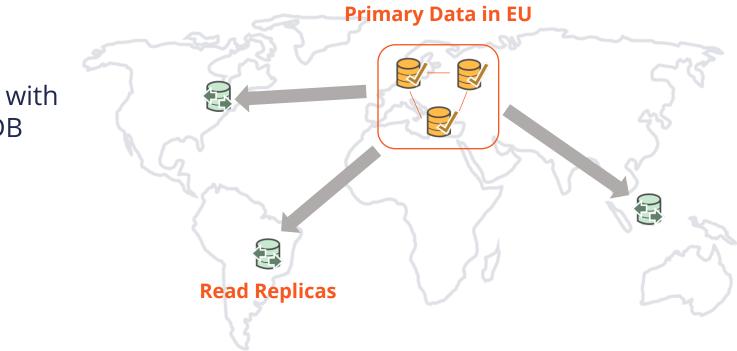
Global Replication with YugaByte DB



Example – online ecommerce site

- Users, orders and shipments needs locality PII data
- **Product locations** table needs scale may be PII

Geo-Partitioning with YugaByte DB



Replicate data on demand to other geo's

- User may be ok with replicating data
- Read replicas on demand (for remote, low-latency reads)
- Change data capture (for analytics)

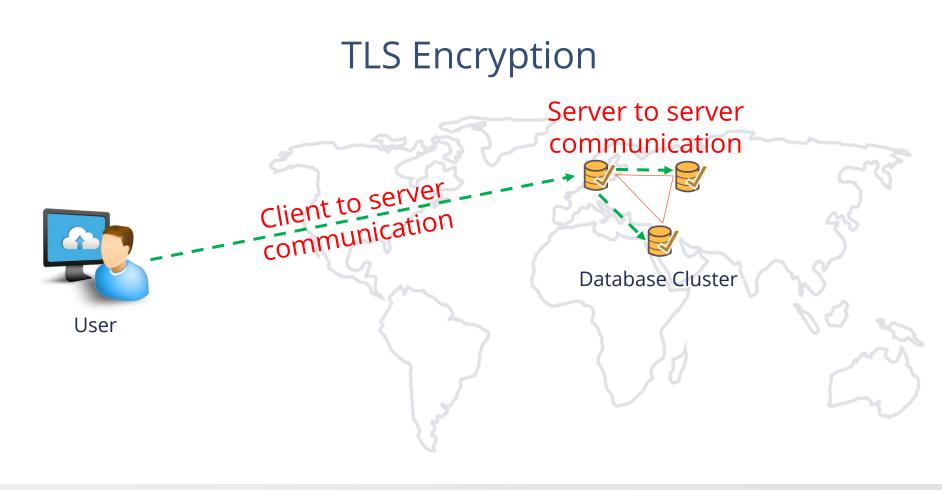
Read Replicas with YugaByte DB

🗗 YugaByte

#2 DATA PRIVACY AND SAFETY

Data must be secured by using best practices by default. Users need to be notified on breach.

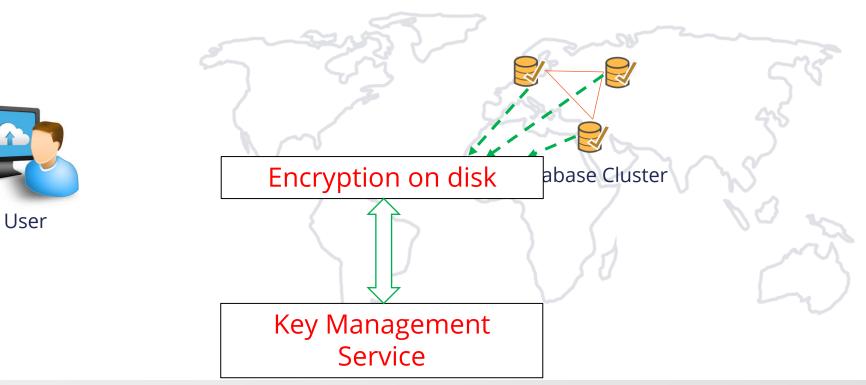
Implement end-to-end encryption on day #1



Encrypt All Network Communication

- Use TLS Encryption
- Between client and server for app interaction
- Between database servers for replication

Encryption All Storage


- Encryption at rest
- Integrate with external Key Management Systems
- Ability to rotate keys on demand

Have a key-value table with id to cipher key. Encrypt PII data with the cipher key for fine-grained control. More in the next section.

Encryption at Rest

🗗 YugaByte

#3 RIGHT TO BE FORGOTTEN

Data must be erased if on explicit request or when data is no longer relevant to original intent.

Use Encryption of Data Attributes

- Have a key-value table with id to cipher key
- Encrypt PII data with the cipher key on write
- Decrypt PII data on access
- Delete cipher key to forget PII data

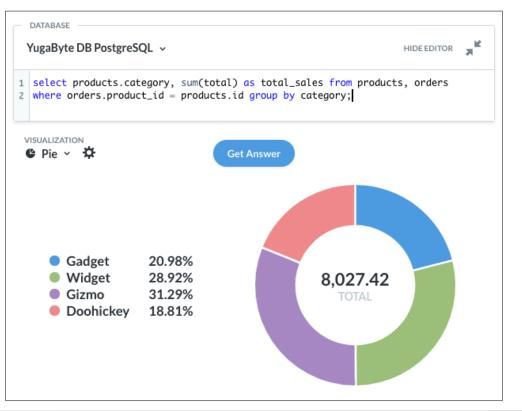
Example - Storing User Profile Data

<mark>P Yuga</mark>Byte

Use Anonymization of Data Attributes

- Many cases where value not needed
- Anonymize PII data with one way hash functions
- Use hashed ids for in data warehouse
- There is no PII data if hashed ids are used!

Example – Website Analytics


USER=foo@bar.com CHECKED OUT PRODUCT=X, CATEGORY=Gadget

<mark>₽ Yuga</mark>Byte

Example – Website Analytics

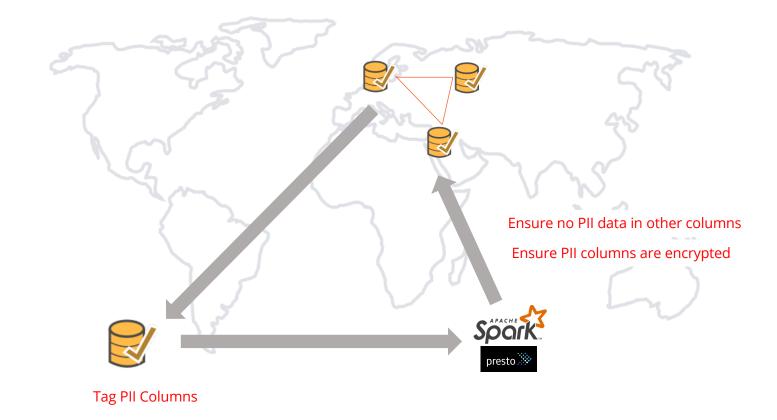
- User no longer identifiable
- Hashed data still useful!

<mark>P Yuga</mark>Byte

#4 DATA ACCESS ON DEMAND

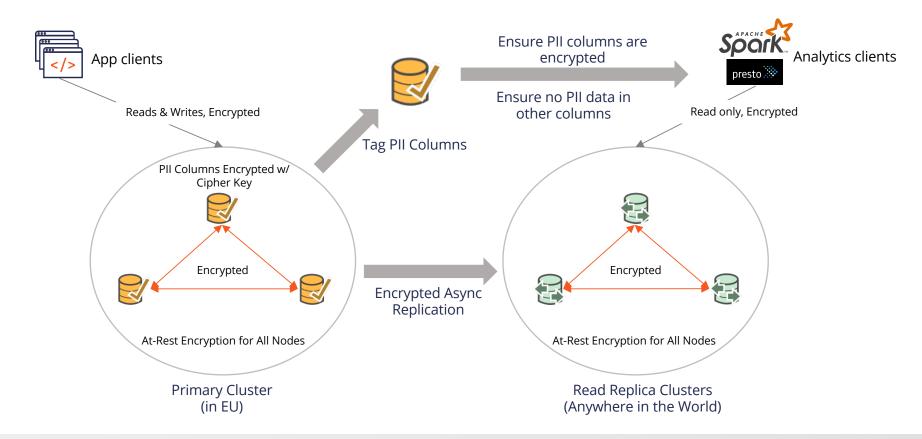
Ability to inform a user about what data is being used, for what purpose and where it is stored.

Tag Tables and Columns with PII


- Store in a separate information architecture table
- Make tagging a part of the process
- Easy to find what PII data is stored on demand

Run Continuous Compliance Checks

- Ensure PII are encrypted
- Ensure non-PII columns do not have sensitive data
- Use Spark/Presto to perform scan periodically
- Run scan on a read replica to not impact production



PrugaByte

PUTTING IT ALL TOGETHER

GDPR Reference Architecture

<mark>₽ Yuga</mark>Byte

Karthik Ranganathan YugaByte

2018 October 16 09:00

How YugaByte DB implements distributed PostgreSQL

A hands-on introduction to YugaByte DB

Try it at <u>docs.yugabyte.com/quick-start</u>