
1© 2018 All rights reserved.

Distributed PostgreSQL 
with YugaByte DB

Karthik Ranganathan
PostgresConf Silicon Valley

Oct 16, 2018



2© 2018 All rights reserved.

CHECKOUT THIS REPO:

github.com/YugaByte/yb-sql-workshop



3© 2018 All rights reserved.

About Us

Kannan Muthukkaruppan, CEO
Nutanix ♦ Facebook ♦ Oracle

IIT-Madras, University of California-Berkeley

Karthik Ranganathan, CTO
Nutanix ♦ Facebook ♦Microsoft

IIT-Madras, University of Texas-Austin

Mikhail Bautin, Software Architect
ClearStory Data ♦ Facebook ♦ D.E.Shaw

Nizhny Novgorod State University, Stony Brook

ü Founded Feb 2016

ü Apache HBase committers and early engineers on Apache 
Cassandra

ü Built Facebook’s NoSQL platform powered by Apache HBase

ü Scaled the platform to serve many mission-critical use cases
• Facebook Messages (Messenger)
• Operational Data Store (Time series Data)

ü Reassembled the same Facebook team at YugaByte along with 
engineers from Oracle, Google, Nutanix and LinkedIn

Founders



4© 2018 All rights reserved.

WORKSHOP AGENDA

• What is YugaByte DB? Why Another DB?

• Exercise 1: BI Tools on YugaByte PostgreSQL

• Exercise 2: Distributed PostgreSQL Architecture

• Exercise 3: Sharding and Scale Out in Action

• Exercise 4: Fault Tolerance in Action



5© 2018 All rights reserved.

WHAT IS
YUGABYTE DB?



6© 2018 All rights reserved.

A transactional, planet-scale database

for building high-performance cloud services.



7© 2018 All rights reserved.

NoSQL + SQL Cloud Native



8© 2018 All rights reserved.

WHY ANOTHER DB?



9© 2018 All rights reserved.

Typical Stack Today
Fragile infra with several moving parts

Datacenter 1

SQL Master SQL Slave

Application Tier (Stateless Microservices)

Datacenter 2

SQL for OLTP data
Manual sharding
Cost: dev team

Manual replication
Manual failover
Cost: ops team

NoSQL for other data
App aware of data silo
Cost: dev team

Cache for low latency
App does caching
Cost: dev team

Data inconsistency/loss
Fragile infra
Hours of debugging
Cost: dev + ops team



10© 2018 All rights reserved.

Does AWS change this?

Datacenter 1

SQL Master SQL Slave

Datacenter 2

Elasticache

Aurora

DynamoDB

Still Complex
it’s the same architecture

Application Tier (Stateless Microservices)



11© 2018 All rights reserved.

Not Portable

Not Portable

Open Source

Not Portable

Open Source

Open Source

High Performance, Transactional, Planet-Scale High Performance, Transactional, Planet-Scale

High Performance, Transactional, Planet-Scale High Performance, Transactional, Planet-Scale

System-of-Record DBs for Global Apps



12© 2018 All rights reserved.

TRANSACTIONAL PLANET-SCALEHIGH PERFORMANCE

Single Shard & Distributed ACID Txns

Document-Based, Strongly 
Consistent Storage

Low Latency, Tunable Reads

High Throughput

OPEN SOURCE

Apache 2.0

Popular APIs Extended
Apache Cassandra, Redis and PostgreSQL (BETA)

Auto Sharding & Rebalancing

Global Data Distribution

Design Principles

CLOUD NATIVE

Built For The Container Era

Self-Healing, Fault-Tolerant



13© 2018 All rights reserved.

EXERCISE #1

BUSINESS INTELLIGENCE



14© 2018 All rights reserved.

EXERCISE #2

DISTRIBUTED POSTGRES:
ARCHITECTURE



15© 2018 All rights reserved.

ARCHITECTURE
Overview



16© 2018 All rights reserved.

YugaByte DB Process Overview

• Universe = cluster of nodes
• Two sets of processes: YB-Master & YB-TServer

• Example universe
4 nodes
rf=3



17© 2018 All rights reserved.

Sharding data

• User table split into tablets



18© 2018 All rights reserved.

One tablet for every key



19© 2018 All rights reserved.

Tablets and replication

• Tablet = set of tablet-peers in a RAFT group

• Num tablet-peers in tablet = replication factor (RF)
Tolerate 1 failure  : RF=3
Tolerate 2 failures: RF=5 



20© 2018 All rights reserved.

YB-TServer

• Process that does IO

• Hosts tablet for tables

• Hosts transaction manager

• Auto memory sizing
Block cache
Memstores



21© 2018 All rights reserved.

YB-Master

• Not in critical path

• System metadata store
Keyspaces, tables, tablets
Users/roles, permissions

• Admin operations
Create/alter/drop of tables
Backups
Load balancing (leader and data balancing)
Enforces data placement policy



22© 2018 All rights reserved.

HANDLING DDL STATEMENTS



23© 2018 All rights reserved.

DDL Statements in PostgreSQL

DDL Postman
(Authentication, authorization)

Rewriter

Planner/Optimizer
Executor

DISK

Create Table Data File
Update System Tables



24© 2018 All rights reserved.

DDL Statements in YugaByte DB PostgreSQL

DDL Postman
(Authentication, authorization)

Rewriter

Planner/Optimizer
Executor

Create sharded, replicated table as data source
Store Table Metadata in YB-Master (in works)

YugaByte 
master3 …YugaByte 

master2
YugaByte 
master1



25© 2018 All rights reserved.

YugaByte Query Layer (YQL)

• Stateless, runs in each YB-TServer process GA Goal: 
Distributed 
Stateless 

PostgreSQL Layer

Current Beta uses 
a single Stateless 
PostgreSQL Layer



26© 2018 All rights reserved.

HANDLING DML QUERIES



27© 2018 All rights reserved.

DDL Queries in PostgreSQL

QUERY Postman
(Authentication, authorization)

Rewriter

Planner/Optimizer
Executor

WAL Writer BG Writer…

DISK

FDW

Local Table Code Path

EXTERNAL
DATABASE



28© 2018 All rights reserved.

DML Queries in YugaByte DB PostgreSQL

DML Postman
(Authentication, authorization)

Rewriter

Planner/Optimizer
Executor

FDW

YugaByte DB Code Path
YB Gateway

EXTERNAL
DATABASE

YugaByte 
node3

YugaByte 
node4 …YugaByte 

node2
YugaByte 

node1

Using FDW as a 
Table Storage API



29© 2018 All rights reserved.

ARCHITECTURE
Data Persistence



30© 2018 All rights reserved.

Data Persistence in DocDB

• DocDB is YugaByte DB’s LSM storage engine

• Persistent key to document store

• Extends and enhances RocksDB

• Designed to support high data-densities per node



31© 2018 All rights reserved.

DocDB: Key-to-Document Store

• Document key
CQL/SQL/Redis primary key 

• Document value
a CQL or SQL row
Redis data structure

• Fine-grained reads and writes



32© 2018 All rights reserved.

DocDB Data Format
Example Insert

Encoding



33© 2018 All rights reserved.

Some of the RocksDB enhancements

• WAL and MVCC enhancements
o Removed RocksDB WAL, re-uses Raft log
o MVCC at a higher layer
o Coordinate RocksDB memstore flushing and Raft log garbage collection

• File format changes
o Sharded (multi-level) indexes and Bloom filters

• Splitting data blocks & metadata into separate files for tiering support

• Separate queues for large and small compactions



34© 2018 All rights reserved.

More Enhancements to RocksDB

• Data model aware Bloom filters

• Per-SSTable key range metadata to optimize range queries

• Server-global block caches & memstore limits

• Scan-resistant block cache (single-touch and multi-touch)



35© 2018 All rights reserved.

ARCHITECTURE
Data Replication



36© 2018 All rights reserved.

Raft Replication for Consistency



37© 2018 All rights reserved.

How Raft Replication Works



38© 2018 All rights reserved.

How Raft Replication Works



39© 2018 All rights reserved.

How Raft Replication Works



40© 2018 All rights reserved.

How Raft Replication Works



41© 2018 All rights reserved.

Raft Related Enhancements

• Leader Leases

• Multiple Raft groups (1 per tablet)

• Leader Balancing

• Group Commits

• Observer Nodes / Read Replicas



42© 2018 All rights reserved.

ARCHITECTURE
Transactions



43© 2018 All rights reserved.

Single Shard Transactions

Raft Consensus Protocol

. . .

INSERT INTO table (k, v) VALUES (‘k1’, ‘v1’) Lock Manager
(in memory, on leader only)

Acquire a lock on x

DocDB / RocksDB
Read current value of x

Submit a Raft operation for replication:
Insert (k1, v1) at hybrid_time 100

Raft log

Tablet 
follower

Tablet 
follower

Replicate to 
majority of 
tablet peers

Apply to RocksDB and 
release lock

k1,v1
@ht=100

1

2

5
3

4



44© 2018 All rights reserved.

MVCC for Lockless Reads
• Achieved through HybridTime (HT)

Monotonically increasing timestamp

• Allows reads at a particular HT without locking

• Multiple versions may exist temporarily
Reclaim older values during compactions



45© 2018 All rights reserved.

Single Shard Transactions
• Each tablet maintains a “safe time” for reads

o Highest timestamp such that the view as of that timestamp is fixed
o In the common case it is just before the hybrid time of the next 

uncommitted record in the tablet



46© 2018 All rights reserved.

Distributed Transactions

• Fully decentralized architecture

• Every tablet server can act as a Transaction Manager

• A distributed Transaction Status table
Tracks state of active transactions

• Transactions can have 3 states:
pending, committed, aborted



47© 2018 All rights reserved.

Distributed Transactions – Write Path



48© 2018 All rights reserved.

Distributed Transactions – Write Path Step 1: Client request



49© 2018 All rights reserved.

Distributed Transactions – Write Path Step 2: Create status record



50© 2018 All rights reserved.

Distributed Transactions – Write Path Step 2: Create status record



51© 2018 All rights reserved.

Distributed Transactions – Write Path Step 3: Write provisional records



52© 2018 All rights reserved.

Distributed Transactions – Write Path Step 4: Atomic commit



53© 2018 All rights reserved.

Distributed Transactions – Write Path Step 5: Respond to client



54© 2018 All rights reserved.

Distributed Transactions – Write Path Step 6: Apply provisional records



55© 2018 All rights reserved.

Isolation Levels

• Currently Snapshot Isolation is supported
o Write-write conflicts detected when writing provisional records

• Serializable isolation (roadmap)
o Reads in RW txns also need provisional records

• Read-only transactions are always lock-free



56© 2018 All rights reserved.

Clock Skew and Read Restarts
• Need to ensure the read timestamp is high enough

o Committed records the client might have seen must be visible

• Optimistically use current Hybrid Time, re-read if necessary
o Reads are restarted if a record with a higher timestamp that the 

client could have seen is encountered
o Read restart happens at most once per tablet
o Relying on bounded clock skew (NTP, AWS Time Sync)

• Only affects multi-row reads of frequently updated records



57© 2018 All rights reserved.

Distributed Transactions – Read Path



58© 2018 All rights reserved.

Distributed Transactions – Read Path Step 1: Client request; pick ht_read



59© 2018 All rights reserved.

Distributed Transactions – Read Path Step 2: Read from tablet servers



60© 2018 All rights reserved.

Distributed Transactions – Read Path Step 3: Resolve txn status



61© 2018 All rights reserved.

Distributed Transactions – Read Path Step 4: Respond to YQL Engine



62© 2018 All rights reserved.

Distributed Transactions – Read Path Step 5: Respond to client



63© 2018 All rights reserved.

Distributed Transactions – Conflicts & Retries

• Every transaction is assigned a random priority

• In a conflict, the higher-priority transaction wins
o The restarted transaction gets a new random priority
o Probability of success quickly increases with retries

• Restarting a transaction is the same as starting a new one

• A read-write transaction can be subject to read-restart



64© 2018 All rights reserved.

EXERCISE #3 and #4

SHARDING AND SCALE OUT
FAULT TOLERANCE



65© 2018 All rights reserved.

Questions?
Try it at

docs.yugabyte.com/latest/quick-start


