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CHECKOUT THIS REPO:

github.com/YugaByte/yb-sql-workshop
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About Us

Kannan Muthukkaruppan, CEO
Nutanix ♦ Facebook ♦ Oracle

IIT-Madras, University of California-Berkeley

Karthik Ranganathan, CTO
Nutanix ♦ Facebook ♦Microsoft

IIT-Madras, University of Texas-Austin

Mikhail Bautin, Software Architect
ClearStory Data ♦ Facebook ♦ D.E.Shaw

Nizhny Novgorod State University, Stony Brook

ü Founded Feb 2016

ü Apache HBase committers and early engineers on Apache 
Cassandra

ü Built Facebook’s NoSQL platform powered by Apache HBase

ü Scaled the platform to serve many mission-critical use cases
• Facebook Messages (Messenger)
• Operational Data Store (Time series Data)

ü Reassembled the same Facebook team at YugaByte along with 
engineers from Oracle, Google, Nutanix and LinkedIn

Founders
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WORKSHOP AGENDA

• What is YugaByte DB? Why Another DB?

• Exercise 1: BI Tools on YugaByte PostgreSQL

• Exercise 2: Distributed PostgreSQL Architecture

• Exercise 3: Sharding and Scale Out in Action

• Exercise 4: Fault Tolerance in Action
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WHAT IS
YUGABYTE DB?
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A transactional, planet-scale database

for building high-performance cloud services.
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NoSQL + SQL Cloud Native
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WHY ANOTHER DB?
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Typical Stack Today
Fragile infra with several moving parts

Datacenter 1

SQL Master SQL Slave

Application Tier (Stateless Microservices)

Datacenter 2

SQL for OLTP data
Manual sharding
Cost: dev team

Manual replication
Manual failover
Cost: ops team

NoSQL for other data
App aware of data silo
Cost: dev team

Cache for low latency
App does caching
Cost: dev team

Data inconsistency/loss
Fragile infra
Hours of debugging
Cost: dev + ops team
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Does AWS change this?

Datacenter 1

SQL Master SQL Slave

Datacenter 2

Elasticache

Aurora

DynamoDB

Still Complex
it’s the same architecture

Application Tier (Stateless Microservices)
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Not Portable

Not Portable

Open Source

Not Portable

Open Source

Open Source

High Performance, Transactional, Planet-Scale High Performance, Transactional, Planet-Scale

High Performance, Transactional, Planet-Scale High Performance, Transactional, Planet-Scale

System-of-Record DBs for Global Apps
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TRANSACTIONAL PLANET-SCALEHIGH PERFORMANCE

Single Shard & Distributed ACID Txns

Document-Based, Strongly 
Consistent Storage

Low Latency, Tunable Reads

High Throughput

OPEN SOURCE

Apache 2.0

Popular APIs Extended
Apache Cassandra, Redis and PostgreSQL (BETA)

Auto Sharding & Rebalancing

Global Data Distribution

Design Principles

CLOUD NATIVE

Built For The Container Era

Self-Healing, Fault-Tolerant
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EXERCISE #1

BUSINESS INTELLIGENCE
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EXERCISE #2

DISTRIBUTED POSTGRES:
ARCHITECTURE



15© 2018 All rights reserved.

ARCHITECTURE
Overview
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YugaByte DB Process Overview

• Universe = cluster of nodes
• Two sets of processes: YB-Master & YB-TServer

• Example universe
4 nodes
rf=3
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Sharding data

• User table split into tablets
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One tablet for every key
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Tablets and replication

• Tablet = set of tablet-peers in a RAFT group

• Num tablet-peers in tablet = replication factor (RF)
Tolerate 1 failure  : RF=3
Tolerate 2 failures: RF=5 
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YB-TServer

• Process that does IO

• Hosts tablet for tables

• Hosts transaction manager

• Auto memory sizing
Block cache
Memstores
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YB-Master

• Not in critical path

• System metadata store
Keyspaces, tables, tablets
Users/roles, permissions

• Admin operations
Create/alter/drop of tables
Backups
Load balancing (leader and data balancing)
Enforces data placement policy
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HANDLING DDL STATEMENTS
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DDL Statements in PostgreSQL

DDL Postman
(Authentication, authorization)

Rewriter

Planner/Optimizer
Executor

DISK

Create Table Data File
Update System Tables
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DDL Statements in YugaByte DB PostgreSQL

DDL Postman
(Authentication, authorization)

Rewriter

Planner/Optimizer
Executor

Create sharded, replicated table as data source
Store Table Metadata in YB-Master (in works)

YugaByte 
master3 …YugaByte 

master2
YugaByte 
master1
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YugaByte Query Layer (YQL)

• Stateless, runs in each YB-TServer process GA Goal: 
Distributed 
Stateless 

PostgreSQL Layer

Current Beta uses 
a single Stateless 
PostgreSQL Layer
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HANDLING DML QUERIES
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DDL Queries in PostgreSQL

QUERY Postman
(Authentication, authorization)

Rewriter

Planner/Optimizer
Executor

WAL Writer BG Writer…

DISK

FDW

Local Table Code Path

EXTERNAL
DATABASE
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DML Queries in YugaByte DB PostgreSQL

DML Postman
(Authentication, authorization)

Rewriter

Planner/Optimizer
Executor

FDW

YugaByte DB Code Path
YB Gateway

EXTERNAL
DATABASE

YugaByte 
node3

YugaByte 
node4 …YugaByte 

node2
YugaByte 

node1

Using FDW as a 
Table Storage API
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ARCHITECTURE
Data Persistence
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Data Persistence in DocDB

• DocDB is YugaByte DB’s LSM storage engine

• Persistent key to document store

• Extends and enhances RocksDB

• Designed to support high data-densities per node
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DocDB: Key-to-Document Store

• Document key
CQL/SQL/Redis primary key 

• Document value
a CQL or SQL row
Redis data structure

• Fine-grained reads and writes
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DocDB Data Format
Example Insert

Encoding
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Some of the RocksDB enhancements

• WAL and MVCC enhancements
o Removed RocksDB WAL, re-uses Raft log
o MVCC at a higher layer
o Coordinate RocksDB memstore flushing and Raft log garbage collection

• File format changes
o Sharded (multi-level) indexes and Bloom filters

• Splitting data blocks & metadata into separate files for tiering support

• Separate queues for large and small compactions
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More Enhancements to RocksDB

• Data model aware Bloom filters

• Per-SSTable key range metadata to optimize range queries

• Server-global block caches & memstore limits

• Scan-resistant block cache (single-touch and multi-touch)
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ARCHITECTURE
Data Replication
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Raft Replication for Consistency
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How Raft Replication Works
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How Raft Replication Works
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How Raft Replication Works
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How Raft Replication Works
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Raft Related Enhancements

• Leader Leases

• Multiple Raft groups (1 per tablet)

• Leader Balancing

• Group Commits

• Observer Nodes / Read Replicas
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ARCHITECTURE
Transactions
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Single Shard Transactions

Raft Consensus Protocol

. . .

INSERT INTO table (k, v) VALUES (‘k1’, ‘v1’) Lock Manager
(in memory, on leader only)

Acquire a lock on x

DocDB / RocksDB
Read current value of x

Submit a Raft operation for replication:
Insert (k1, v1) at hybrid_time 100

Raft log

Tablet 
follower

Tablet 
follower

Replicate to 
majority of 
tablet peers

Apply to RocksDB and 
release lock

k1,v1
@ht=100

1

2

5
3

4
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MVCC for Lockless Reads
• Achieved through HybridTime (HT)

Monotonically increasing timestamp

• Allows reads at a particular HT without locking

• Multiple versions may exist temporarily
Reclaim older values during compactions
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Single Shard Transactions
• Each tablet maintains a “safe time” for reads

o Highest timestamp such that the view as of that timestamp is fixed
o In the common case it is just before the hybrid time of the next 

uncommitted record in the tablet
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Distributed Transactions

• Fully decentralized architecture

• Every tablet server can act as a Transaction Manager

• A distributed Transaction Status table
Tracks state of active transactions

• Transactions can have 3 states:
pending, committed, aborted
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Distributed Transactions – Write Path
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Distributed Transactions – Write Path Step 1: Client request
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Distributed Transactions – Write Path Step 2: Create status record
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Distributed Transactions – Write Path Step 2: Create status record
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Distributed Transactions – Write Path Step 3: Write provisional records
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Distributed Transactions – Write Path Step 4: Atomic commit
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Distributed Transactions – Write Path Step 5: Respond to client
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Distributed Transactions – Write Path Step 6: Apply provisional records
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Isolation Levels

• Currently Snapshot Isolation is supported
o Write-write conflicts detected when writing provisional records

• Serializable isolation (roadmap)
o Reads in RW txns also need provisional records

• Read-only transactions are always lock-free
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Clock Skew and Read Restarts
• Need to ensure the read timestamp is high enough

o Committed records the client might have seen must be visible

• Optimistically use current Hybrid Time, re-read if necessary
o Reads are restarted if a record with a higher timestamp that the 

client could have seen is encountered
o Read restart happens at most once per tablet
o Relying on bounded clock skew (NTP, AWS Time Sync)

• Only affects multi-row reads of frequently updated records
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Distributed Transactions – Read Path
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Distributed Transactions – Read Path Step 1: Client request; pick ht_read
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Distributed Transactions – Read Path Step 2: Read from tablet servers
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Distributed Transactions – Read Path Step 3: Resolve txn status
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Distributed Transactions – Read Path Step 4: Respond to YQL Engine



62© 2018 All rights reserved.

Distributed Transactions – Read Path Step 5: Respond to client
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Distributed Transactions – Conflicts & Retries

• Every transaction is assigned a random priority

• In a conflict, the higher-priority transaction wins
o The restarted transaction gets a new random priority
o Probability of success quickly increases with retries

• Restarting a transaction is the same as starting a new one

• A read-write transaction can be subject to read-restart
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EXERCISE #3 and #4

SHARDING AND SCALE OUT
FAULT TOLERANCE
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Questions?
Try it at

docs.yugabyte.com/latest/quick-start


