

Viewing data at the intersection between roles
By Lloyd Albin

Where to find this presentation:

• Blog
• http://lloyd.thealbins.com/intersection%20between%20roles

• Presentation (with PowerPoint & SQL Files)
• http://lloyd.thealbins.com/intersection%20between%20roles%20presentation

© Fred Hutchinson Cancer Research Center 2

Additional notes in the

note section of the slide

when you see this icon

() in the upper right

corner of the slide.

http://lloyd.thealbins.com/intersection between roles
http://lloyd.thealbins.com/intersection between roles presentation

What this presentation covers:

• We ran across a use case where we needed to restrict people's access to the data by

requiring them to belong to 2 or more groups. PostgreSQL by default does not support this.

• The role permissions in Postgres only supports OR. This use case needs to support AND.

• The Blog was my response to the developers on how to do this and which method was the

best and/or fastest method.

• In our use case, we wanted the user to SELECT on a table and return an error if the user did

not have the correct rights instead of returning an empty table.

• This is because, if you have a table containing adverse events, it could jeopardize human

safety if users thought there were no adverse events, when, in fact, it's just that they didn't

have permission to see the adverse events.

© Fred Hutchinson Cancer Research Center 3

Icon Meaning

Table

View

Function

Normal Table Owner

Table must be owned by Superuser

No Data

Can view empty data set

Can view data set with data

Happy with Results

Un-Happy with Results

Symbol Key:

• These symbols will be used on many of the future slides.

© Fred Hutchinson Cancer Research Center 4

Criteria:

• This is what was wished for, but is not possible. Now we need to

figure out what we can accomplish and how it affects

performance.

• Any Ideas?

© Fred Hutchinson Cancer Research Center 5

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Check users Groups

What we need to find out is, does this user belong to these

roles/groups. As normal, there are several ways to ask this

question. While style 1 works, the more groups that you

need to check against the uglier the code becomes. While

I am told two groups right now, I can see a possibility of

more than two in the future.

Style 2 is cleaner code and handles more than two

roles/groups easily.

I run into some issues along the way, such as using the

WHERE clause in the views/rules using the functions. This

does not work, because the WHERE clause does not get

evaluated when the source table is empty. This is why I

moved the function to act as a source table within the

views/rules so that it would get evaluated every time and

throw errors when there was partial permissions.

© Fred Hutchinson Cancer Research Center 6

-- Check Group Permissions – Style 1

SELECT CASE WHEN

pg_has_role(current_user, 'group_a', 'MEMBER') IS TRUE

AND pg_has_role(current_user, 'group_b', 'MEMBER') IS TRUE

THEN TRUE

ELSE FALSE

END AS check;

-- Check Group Permissions – Style 2

SELECT (array_agg(role_name::text) @>

ARRAY['group_a', 'group_b']) AS check

FROM information_schema.applicable_roles

WHERE grantee = current_user;

Setup for all examples

When I show each sample set in this presentation, you will

need to start with an empty database and run this generic

setup for each of the examples.

© Fred Hutchinson Cancer Research Center 7

-- Setup for all examples

-- Create a new database and then login as the superuser

-- This allows us to switch roles easily for testing

-- Create the accounts needed for this test

CREATE ROLE group_a;

CREATE ROLE group_b;

CREATE ROLE user_a WITH INHERIT IN ROLE group_a, group_b;

CREATE ROLE user_b WITH INHERIT IN ROLE group_a;

CREATE ROLE user_c;

CREATE ROLE table_owner;

-- Change to the table owner to create the table and insert

the data

SET ROLE table_owner;

CREATE TABLE public.test (

id INTEGER,

string TEXT

);

INSERT INTO public.test VALUES

(1, 'testing’),

(2, 'more testing’),

(3, 'even more testing');

TABLE

Setup for Table

The problem with the plain TABLE is that if you only

belong to one of the two group, you can view the data. We

want to enforce that you must belong to both groups. This

means that a plain table with normal permissions will not

work for what we want.

The con's:

• Can view the data if you have partial permissions.

© Fred Hutchinson Cancer Research Center 9

-- In an empty database run the "Setup for all examples"
-- first then run the code below

-- Grant both groups SELECT permissions on the table
GRANT SELECT ON public.test TO group_a;
GRANT SELECT ON public.test TO group_b;

SET ROLE user_a; -- Privileged User
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 31 ms)

SET ROLE user_b; -- Partial Privileged User
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 0 ms)

SET ROLE user_c; -- Un-Privileged User
SELECT * FROM public.test;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 0 ms)

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 16 ms)

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 16 ms)

SET ROLE postgres; -- Superuser
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 15 ms)

Results:

• With the Table, user_b who belongs to only one of the two groups can read the table. This is a security issue.

© Fred Hutchinson Cancer Research Center 10

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Feature Chart

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

user_c

Partial

Privileged

user_b

Privileged

user_a

Superuser Table Owner

TABLE

VIEW

Setup for View

For this method, no SELECT permissions are granted on

the table. Instead, there's a view to the table and each role

is granted separately. The role intersection check is

implemented in a LEFT JOIN. The problem with the VIEW

is that if you only belong to one of the two groups, you see

an empty dataset instead of knowing that you did not have

the correct permissions.

The con's:

• Empty table returned when you don't have all the

correct permissions instead of an error message.

© Fred Hutchinson Cancer Research Center 12

-- In an empty database run the "Setup for all examples"

-- first then run the code below

SET ROLE table_owner;

CREATE OR REPLACE VIEW public.test_view AS

SELECT a.*

FROM public.test a

LEFT JOIN (

SELECT (array_agg(role_name::text) @>

ARRAY['group_a', 'group_b']) AS check

FROM information_schema.applicable_roles

WHERE grantee = current_user

) b ON (TRUE)

WHERE b.check = TRUE;

GRANT SELECT ON public.test_view TO group_a;

GRANT SELECT ON public.test_view TO group_b;

Check with Dataset

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test_view;
-- 3 rows returned (execution time: 0 ms; total time: 16 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 32 ms)

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test_view;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 16 ms)

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 16 ms)

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 16 ms)

SET ROLE postgres; -- Superuser
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 15 ms)

© Fred Hutchinson Cancer Research Center 13

-- Check to see what happens with an empty dataset
SET ROLE table_owner;
TRUNCATE TABLE public.test;

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 16 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 16 ms)

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test_view;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE postgres; -- Superuser
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 0 ms)

Check with Empty Data Set

Results:

• With the View, user_b who belongs to only one of the two groups see’s a blank data set assuming there are no

records. This is actually wrong and needs to be prevented. It is also a security issue.

© Fred Hutchinson Cancer Research Center 14

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Feature Chart

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

user_c

Partial

Privileged

user_b

Privileged

user_a

Superuser Table Owner

VIEW

FUNCTION

Setup for Function

For this method, no SELECT permissions are granted on

the table. Instead, there's a function that reads table and

each role is granted separately on the function. The role

intersection check is implemented inside the function.

While a function may seem like a simple fix, it is not.

Normally you would set the function to be owned by the

table_owner and run as security definer. The problem with

this is that the table_owner can't see the results from

information_schema.applicable_roles for any other user

but table_owner. This means that the function must be

owned by a superuser and run as security definer for it to

work properly. This is normally a bad practice, so I do not

recommend this style.

• Function must be owned by a super user with

execution as security definer

© Fred Hutchinson Cancer Research Center 16

-- In an empty database run the "Setup for all examples"

-- first then run the code below

SET ROLE postgres;

CREATE OR REPLACE FUNCTION public.test ()

RETURNS SETOF public.test AS

$body$

DECLARE

r RECORD;

check_roles NAME[];

BEGIN

check_roles = ARRAY['group_a'::name, 'group_b'::name];

-- Check to see if the current_user is a direct member of the

check_roles

SELECT ((SELECT array_agg(role_name::name)

FROM information_schema.applicable_roles

WHERE grantee = session_user) @> check_roles)

AS security_check

INTO r;

IF r.security_check = TRUE THEN

-- current_user was found to be a member of all check_roles

RETURN QUERY SELECT * FROM public.test;

ELSE

-- current_user was NOT found to be a member of all check_roles

RAISE EXCEPTION 'test(): User: % is required to be a member of

all of these groups: %', session_user, check_roles;

END IF;

END;

$body$

LANGUAGE 'plpgsql’

STABLE

CALLED ON NULL INPUT

SECURITY DEFINER;

Check with Dataset

GRANT EXECUTE ON FUNCTION public.test() TO group_a, group_b;
REVOKE EXECUTE ON FUNCTION public.test() FROM PUBLIC;

SET SESSION AUTHORIZATION user_a; -- Privilaged User
SELECT * FROM public.test();
-- 3 rows returned (execution time: 0 ms; total time: 15 ms)

SET SESSION AUTHORIZATION user_b; -- Partial Privilaged User
SELECT * FROM public.test();
-- ERROR: test(): User: user_b is required to be a member of all of these groups: {group_a,group_b}

SET SESSION AUTHORIZATION user_c; -- Un-Privilaged User
SELECT * FROM public.test();
-- ERROR: permission denied for function test

SET SESSION AUTHORIZATION group_a; -- 1st Group
SELECT * FROM public.test();
-- ERROR: test(): User: group_a is required to be a member of all of these groups: {group_a,group_b}

SET SESSION AUTHORIZATION group_b; -- 2nd Group
SELECT * FROM public.test();
-- ERROR: test(): User: group_b is required to be a member of all of these groups: {group_a,group_b}

SET SESSION AUTHORIZATION table_owner; -- Table Owner
SELECT * FROM public.test();
-- ERROR: permission denied for function test

SET SESSION AUTHORIZATION postgres; -- Superuser
SELECT * FROM public.test();
-- ERROR: test(): User: postgres is required to be a member of all of these groups: {group_a,group_b}

© Fred Hutchinson Cancer Research Center 17

-- Check to see what happens with an empty dataset
SET ROLE table_owner;
TRUNCATE TABLE public.test;

SET SESSION AUTHORIZATION user_a; -- Privilaged User
SELECT * FROM public.test();
-- Empty set (execution time: 0 ms; total time: 0 ms

SET SESSION AUTHORIZATION user_b; -- Partial Privilaged User
SELECT * FROM public.test();
-- ERROR: test(): User: user_b is required to be a member of all of these groups: {group_a,group_b}

SET SESSION AUTHORIZATION user_c; -- Un-Privilaged User
SELECT * FROM public.test();
-- ERROR: permission denied for relation test

SET SESSION AUTHORIZATION group_a; -- 1st Group
SELECT * FROM public.test();
-- ERROR: test(): User: group_a is required to be a member of all of these groups: {group_a,group_b}

SET SESSION AUTHORIZATION group_b; -- 2nd Group
SELECT * FROM public.test();
-- EERROR: test(): User: group_b is required to be a member of all of these groups: {group_a,group_b}

SET SESSION AUTHORIZATION table_owner; -- Table Owner
SELECT * FROM public.test();
-- ERROR: permission denied for function test

SET SESSION AUTHORIZATION postgres; -- Superuser
SELECT * FROM public.test();
-- ERROR: test(): User: postgres is required to be a member of all of these groups: {group_a,group_b}

Check with Empty Data Set

Results:

• With the Function, we have what we want, but I don’t like the function having to run as a super user and there would

be one function per table.

© Fred Hutchinson Cancer Research Center 18

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Feature Chart

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

user_c

Partial

Privileged

user_b

Privileged

user_a

Superuser Table Owner

FUNCTION

TABLE with POLICY

Setup for Table with Policy

For this method, each role is granted SELECT permissions

on the table. The role intersection check is implemented in

the policy. This is sort of an unconventional way of using

Row Level Security. We can perform the test we want

using a Policy which requires PostgreSQL 9.5+. The

problem with this method is that it is a per row evaluation.

This means that if the table is empty, the evaluation does

not happen.

The con's:

• Empty table returned when you don't have all the

correct permissions instead of an error message.

© Fred Hutchinson Cancer Research Center 20

-- In an empty database run the "Setup for all examples"

-- first then run the code below

-- Grant both groups SELECT permissions on the table

GRANT SELECT ON public.test TO group_a;

GRANT SELECT ON public.test TO group_b;

CREATE POLICY test_policy ON public.test

USING ((SELECT array_agg(role_name::text)

FROM information_schema.applicable_roles

WHERE grantee = current_user) @> ARRAY['group_a', 'group_b']);

ALTER TABLE public.test

ENABLE ROW LEVEL SECURITY;

Check with Dataset

SET ROLE user_a; -- Privilaged User

SELECT * FROM public.test;

-- 3 rows returned (execution time: 15 ms; total time: 31 ms)

SET ROLE user_b; -- Partial Privilaged User

SELECT * FROM public.test;

-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE user_c; -- Un-Privilaged User

SELECT * FROM public.test;

-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group

SELECT * FROM public.test;

-- Empty set (execution time: 0 ms; total time: 16 ms)

SET ROLE group_b; -- 2nd Group

SELECT * FROM public.test;

-- Empty set (execution time: 0 ms; total time: 15 ms)

SET ROLE table_owner; -- Table Owner

SELECT * FROM public.test;

-- 3 rows returned (execution time: 0 ms; total time: 0 ms)

SET ROLE postgres; -- Superuser

SELECT * FROM public.test;

-- 3 rows returned (execution time: 0 ms; total time: 16 ms)

© Fred Hutchinson Cancer Research Center 21

-- Check to see what happens with an empty dataset

SET ROLE table_owner;

TRUNCATE TABLE public.test;

SET ROLE user_a; -- Privilaged User

SELECT * FROM public.test;

-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE user_b; -- Partial Privilaged User

SELECT * FROM public.test;

-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE user_c; -- Un-Privilaged User

SELECT * FROM public.test;

-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group

SELECT * FROM public.test;

-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE group_b; -- 2nd Group

SELECT * FROM public.test;

-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE table_owner; -- Table Owner

SELECT * FROM public.test;

-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE postgres; -- Superuser

SELECT * FROM public.test;

-- Empty set (execution time: 0 ms; total time: 0 ms)

Check with Empty Data Set

Results:

© Fred Hutchinson Cancer Research Center 22

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Feature Chart

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

user_c

Partial

Privileged

user_b

Privileged

user_a

Superuser Table Owner

TABLE with

POLICY

9.5+

TABLE with POLICY

(FORCE’d)

Setup for Table with Policy using forced Row Level Security

For this method, each role is granted SELECT permissions

on the table. The role intersection check is implemented in

the policy and also enforced against the table owner. This

is sort of an unconventional way of using Row Level

Security. We can perform the test we want using a Policy

which requires PostgreSQL 9.5+ and enforce the policy

against the table owner.

The con's:

• Empty table returned when you don't have all the

correct permissions instead of an error message.

• Table owner, does not have the rights to read, write,

update, or delete the data.

© Fred Hutchinson Cancer Research Center 24

-- In an empty database run the "Setup for all examples"

-- first then run the code below

-- Grant both groups SELECT permissions on the table

GRANT SELECT ON public.test TO group_a;

GRANT SELECT ON public.test TO group_b;

CREATE POLICY test_policy ON public.test

USING ((SELECT array_agg(role_name::text)

FROM information_schema.applicable_roles

WHERE grantee = current_user) @> ARRAY['group_a', 'group_b']);

ALTER TABLE public.test

ENABLE ROW LEVEL SECURITY;

ALTER TABLE public.test

FORCE ROW LEVEL SECURITY;

Check with Dataset

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 0 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE postgres; -- Superuser
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 0 ms)

© Fred Hutchinson Cancer Research Center 25

-- Check to see what happens with an empty dataset
SET ROLE table_owner;
TRUNCATE TABLE public.test;

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE postgres; -- Superuser
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

Check with Empty Data Set

Results:

© Fred Hutchinson Cancer Research Center 26

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Feature Chart

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

user_c

Partial

Privileged

user_b

Privileged

user_a

Superuser Table Owner

TABLE with

POLICY

9.5+

TABLE with RULE

Setup for Table with Rule

For this method, no SELECT permissions are granted on

the table. Instead, there's a rule/view to the table and each

role is granted separately. The role intersection check is

implemented in a WHERE clause of the rule. The problem

with the RULE is that if you only belong to one of the two

group, you get an empty dataset instead of an error

message. Rules are how PostgreSQL implements views

internally. Per the PostgreSQL Docs: "It is considered

better style to write a CREATE VIEW command than to

create a real table and define an ON SELECT rule for it."

The con's:

• Empty table returned when you don't have all the

correct permissions instead of an error message.

• Must update the TABLE and RULE every time you

change the underlying table structure.

• Once the RULE is applied, the TABLE turns into a

VIEW.

• Must use DROP VIEW to get rid of the TABLE with

RULE.

© Fred Hutchinson Cancer Research Center 28

-- In an empty database run the "Setup for all examples"

-- first then run the code below

SET ROLE table_owner;

CREATE TABLE public.test_rule (LIKE public.test);

CREATE RULE "_RETURN" AS ON SELECT TO public.test_rule DO INSTEAD

SELECT * FROM public.test

WHERE (SELECT array_agg(role_name::text)

FROM information_schema.applicable_roles

WHERE grantee = current_user)

@> ARRAY['group_a', 'group_b’];

GRANT SELECT ON public.test_rule TO group_a;

GRANT SELECT ON public.test_rule TO group_b;

Check with Dataset

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test_rule;
-- 3 rows returned (execution time: 0 ms; total time: 0 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 16 ms)

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test_rule;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE postgres; -- Superuser
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 0 ms)

© Fred Hutchinson Cancer Research Center 29

-- Check to see what happens with an empty dataset
SET ROLE table_owner;
TRUNCATE TABLE public.test;

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 15 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 15 ms)

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test_rule;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE postgres; -- Superuser
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 0 ms)

Check with Empty Data Set

Results:

© Fred Hutchinson Cancer Research Center 30

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Feature Chart

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

user_c

Partial

Privileged

user_b

Privileged

user_a

Superuser Table Owner

TABLE with

RULE

VIEW with FUNCTION

Setup for View with Function

For this method, no SELECT permissions are granted on

the table. Instead, there's a view to the table and each role

is granted separately. The role intersection check is

implemented just before the LEFT JOIN. This causes the

security_check function to always be checked even if the

table is empty. This does enforce most of what we want.

Just wish it appeared as a table.

The con's:

• Empty table returned when you don't have all the

correct permissions instead of an error message.

• Table owner, does not have the rights to read, write,

update, or delete the data.

© Fred Hutchinson Cancer Research Center 32

-- In an empty database run the "Setup for all examples"
-- first then run the code below

SET ROLE table_owner;
CREATE OR REPLACE FUNCTION public.security_check (check_roles name [])
RETURNS boolean AS $body$
DECLARE

r RECORD;
BEGIN

-- Checks to see if NULL was passed
IF array_length(check_roles,1) IS NULL THEN

RAISE EXCEPTION 'security_check(): Must specify roles to be checked.’;
END IF;
-- Checks to see if any value in the array is NULL
IF check_roles @> ARRAY[NULL::name] THEN

RAISE EXCEPTION 'security_check(): NULL roles are not allowed in check_roles: %', check_roles;
END IF;
-- Check to see if the current_user is a direct member of the check_roles
SELECT ((SELECT array_agg(role_name::name) FROM information_schema.applicable_roles WHERE

grantee = current_user) @> check_roles) AS security_check INTO r;
IF r.security_check = TRUE THEN

-- current_user was found to be a member of all check_roles
RETURN TRUE;

ELSE
-- current_user was NOT found to be a member of all check_roles
RAISE EXCEPTION 'security_check(): User: % is required to be a member of all of these groups: %',

current_user, check_roles;
END IF;

END; $body$ LANGUAGE 'plpgsql’
STABLE
CALLED ON NULL INPUT
SECURITY INVOKER;

Setup for View with Function

For this method, no SELECT permissions are granted on

the table. Instead, there's a view to the table and each role

is granted separately. The role intersection check is

implemented just before the LEFT JOIN. This causes the

security_check function to always be checked even if the

table is empty. This does enforce most of what we want.

Just wish it appeared as a table.

The con's:

• Empty table returned when you don't have all the

correct permissions instead of an error message.

• Table owner, does not have the rights to read, write,

update, or delete the data.

© Fred Hutchinson Cancer Research Center 33

GRANT EXECUTE ON FUNCTION public.security_check(check_roles name []) TO PUBLIC;

CREATE OR REPLACE VIEW public.test_view AS
SELECT a.*
FROM public.security_check(ARRAY['group_a', 'group_b'])
LEFT JOIN public.test a ON (TRUE)
WHERE a.id IS NOT NULL;

GRANT SELECT ON public.test_view TO group_a;
GRANT SELECT ON public.test_view TO group_b;

Check with Dataset

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test_view;
-- 3 rows returned (execution time: 0 ms; total time: 0 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: user_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test_view;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: group_a is required to be a member of all of these groups: {group_a,group_b}

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: group_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: table_owner is required to be a member of all of these groups:
{group_a,group_b}

SET ROLE postgres; -- Superuser
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: postgres is required to be a member of all of these groups: {group_a,group_b}

© Fred Hutchinson Cancer Research Center 34

-- Check to see what happens with an empty dataset
SET ROLE table_owner;
TRUNCATE TABLE public.test;

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test_view;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: user_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test_view;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: group_a is required to be a member of all of these groups: {group_a,group_b}

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: group_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: table_owner is required to be a member of all of these groups:
{group_a,group_b}

SET ROLE postgres; -- Superuser
SELECT * FROM public.test_view;
-- ERROR: security_check(): User: postgres is required to be a member of all of these groups: {group_a,group_b}

Check with Empty Data Set

Results:

© Fred Hutchinson Cancer Research Center 35

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Feature Chart

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

user_c

Partial

Privileged

user_b

Privileged

user_a

Superuser Table Owner

VIEW with

FUNCTION

TABLE with POLICY and FUNCTION

Setup for Table with Policy and Function

For this method, each role is granted SELECT permissions

on the table. The role intersection check is implemented in

the policy as a call to the security_check function. This is

better than just having a table and policy because this

method can throw errors for partial privileged users if there

is data.

The con's:

• Empty table returned when you don't have all the

correct permissions instead of an error message.

• Table owner, does not have the rights to read, write,

update, or delete the data.

© Fred Hutchinson Cancer Research Center 37

-- In an empty database run the "Setup for all examples"
-- first then run the code below

SET ROLE table_owner;
CREATE OR REPLACE FUNCTION public.security_check (check_roles name [])
RETURNS boolean AS $body$
DECLARE

r RECORD;
BEGIN

-- Checks to see if NULL was passed
IF array_length(check_roles,1) IS NULL THEN

RAISE EXCEPTION 'security_check(): Must specify roles to be checked.’;
END IF;
-- Checks to see if any value in the array is NULL
IF check_roles @> ARRAY[NULL::name] THEN

RAISE EXCEPTION 'security_check(): NULL roles are not allowed in check_roles: %', check_roles;
END IF;
-- Check to see if the current_user is a direct member of the check_roles
SELECT ((SELECT array_agg(role_name::name)

FROM information_schema.applicable_roles
WHERE grantee = current_user) @> check_roles) AS security_check INTO r;

IF r.security_check = TRUE THEN
-- current_user was found to be a member of all check_roles
RETURN TRUE;

ELSE
-- current_user was NOT found to be a member of all check_roles
RAISE EXCEPTION 'security_check(): User: % is required to be a member of all of these groups: %',

current_user, check_roles;
END IF;

END;
$body$
LANGUAGE 'plpgsql’
STABLE
CALLED ON NULL INPUT
SECURITY INVOKER;

Setup for Table with Policy and Function

© Fred Hutchinson Cancer Research Center 38

GRANT EXECUTE ON FUNCTION public.security_check(check_roles name []) TO PUBLIC;

-- Grant both groups SELECT permissions on the table
GRANT SELECT ON public.test TO group_a;
GRANT SELECT ON public.test TO group_b;

CREATE POLICY test_policy ON public.test
USING (public.security_check(ARRAY['group_a'::name, 'group_b'::name]));

ALTER TABLE public.test ENABLE ROW LEVEL SECURITY;

Check with Dataset

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 15 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test;
-- ERROR: security_check(): User: user_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test;
-- ERROR: security_check(): User: group_a is required to be a member of all of these groups: {group_a,group_b}

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test;
-- ERROR: security_check(): User: group_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 0 ms)

SET ROLE postgres; -- Superuser
SELECT * FROM public.test;
-- 3 rows returned (execution time: 0 ms; total time: 16 ms)

© Fred Hutchinson Cancer Research Center 39

-- Check to see what happens with an empty dataset
SET ROLE table_owner;
TRUNCATE TABLE public.test;

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

SET ROLE postgres; -- Superuser
SELECT * FROM public.test;
-- Empty set (execution time: 0 ms; total time: 0 ms)

Check with Empty Data Set

Results:

© Fred Hutchinson Cancer Research Center 40

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Feature Chart

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

user_c

Partial

Privileged

user_b

Privileged

user_a

Superuser Table Owner

TABLE with

POLICY

and

FUNCTION

Speed Test

The table policy is a per row item, you will want to

understand how this affects performance. In this test

we will add 10 millions rows of data and then test

with and without using a policy several times. We can

that the row level security adds about 3-5 seconds

for 10 million rows. Because the function is set as

STABLE, this also means that it will only be

evaluated once, thereby saving some time over

having to be run for every row.

© Fred Hutchinson Cancer Research Center 41

-- Continuing from the previous test.

SET ROLE table_owner;
WITH RECURSIVE t(n) AS (

VALUES (1)
UNION ALL

SELECT n+1 FROM t WHERE n < 10000000
)
INSERT INTO public.test
SELECT n, 'testing' FROM t;

SET ROLE user_a;
CREATE TABLE test2 AS SELECT * FROM public.test;
-- Query OK, 10000000 rows affected (execution time: 11.014 sec; total time: 11.014 sec)

SET ROLE table_owner;
ALTER TABLE public.test DISABLE ROW LEVEL SECURITY;
SET ROLE user_a;
CREATE TABLE test3 AS SELECT * FROM public.test;
-- Query OK, 10000000 rows affected (execution time: 8.159 sec; total time: 8.159 sec)

SET ROLE table_owner;
ALTER TABLE public.test ENABLE ROW LEVEL SECURITY;
SET ROLE user_a;
CREATE TABLE test4 AS SELECT * FROM public.test;
-- Query OK, 10000000 rows affected (execution time: 13.104 sec; total time: 13.104 sec)

SET ROLE table_owner;
ALTER TABLE public.test DISABLE ROW LEVEL SECURITY;
SET ROLE user_a;
CREATE TABLE test5 AS SELECT * FROM public.test;
-- Query OK, 10000000 rows affected (execution time: 8.315 sec; total time: 8.315 sec)

TABLE with RULE and FUNCTION

Setup for Table with Rule and Function

For this method, no SELECT permissions are granted on

the table. Instead, there's a view to the table and each role

is granted separately. The role intersection check is

implemented just before the LEFT JOIN. This causes the

security_check function to always be checked even in the

table is empty. The problem with this method is that it is a

per row evaluation.

The con's:

• Table owner, does not have the rights to read, write,

update, or delete the data.

• Once the RULE is applied, the TABLE turns into a

VIEW.

• Must use DROP VIEW to get rid of the TABLE with

RULE.

© Fred Hutchinson Cancer Research Center 43

-- In an empty database run the "Setup for all examples"
-- first then run the code below

SET ROLE table_owner;
CREATE OR REPLACE FUNCTION public.security_check (check_roles name [])
RETURNS boolean AS $body$
DECLARE

r RECORD;
BEGIN

-- Checks to see if NULL was passed
IF array_length(check_roles,1) IS NULL THEN

RAISE EXCEPTION 'security_check(): Must specify roles to be checked.’;
END IF;
-- Checks to see if any value in the array is NULL
IF check_roles @> ARRAY[NULL::name] THEN

RAISE EXCEPTION 'security_check(): NULL roles are not allowed in check_roles: %', check_roles;
END IF;
-- Check to see if the current_user is a direct member of the check_roles
SELECT ((SELECT array_agg(role_name::name) FROM

information_schema.applicable_roles WHERE
grantee = current_user) @> check_roles) AS security_check INTO r;

IF r.security_check = TRUE THEN
-- current_user was found to be a member of all check_roles
RETURN TRUE;

ELSE
-- current_user was NOT found to be a member of all check_roles
RAISE EXCEPTION 'security_check(): User: % is required to be a member of all of these groups: %',

current_user, check_roles;
END IF;

END;
$body$
LANGUAGE 'plpgsql’
STABLE
CALLED ON NULL INPUT
SECURITY INVOKER;

Setup for Table with Rule and Function

For this method, no SELECT permissions are granted on

the table. Instead, there's a view to the table and each role

is granted separately. The role intersection check is

implemented just before the LEFT JOIN. This causes the

security_check function to always be checked even in the

table is empty. The problem with this method is that it is a

per row evaluation.

The con's:

• Table owner, does not have the rights to read, write,

update, or delete the data.

• Once the RULE is applied, the TABLE turns into a

VIEW.

• Must use DROP VIEW to get rid of the TABLE with

RULE.

© Fred Hutchinson Cancer Research Center 44

GRANT EXECUTE ON FUNCTION public.security_check(check_roles name []) TO PUBLIC;

DROP VIEW public.test_rule;
CREATE TABLE public.test_rule (LIKE public.test);
SELECT relname, relkind FROM pg_catalog.pg_class WHERE relname = 'test_rule’;
/*
"relname" "relkind"
"test_rule" "r"
*/
CREATE RULE "_RETURN" AS ON SELECT TO public.test_rule DO INSTEAD

SELECT test.*
FROM public.security_check(ARRAY['group_a'::name, 'group_b'::name])
LEFT JOIN public.test ON (TRUE)
-- Where clause needed to prevent 1 row from being returned when test contains 0 rows
WHERE test.id IS NOT NULL;

SELECT relname, relkind FROM pg_catalog.pg_class WHERE relname = 'test_rule’;
/*
"relname" "relkind"
"test_rule" "v"
*/

GRANT SELECT ON public.test_rule TO group_a;
GRANT SELECT ON public.test_rule TO group_b;

Check with Dataset

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test_rule;
-- 3 rows returned (execution time: 0 ms; total time: 15 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: user_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test_rule;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: group_a is required to be a member of all of these groups: {group_a,group_b}

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: group_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: table_owner is required to be a member of all of these groups:
{group_a,group_b}

SET ROLE postgres; -- Superuser
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: postgres is required to be a member of all of these groups: {group_a,group_b}

© Fred Hutchinson Cancer Research Center 45

-- Check to see what happens with an empty dataset
SET ROLE table_owner;
TRUNCATE TABLE public.test;

SET ROLE user_a; -- Privilaged User
SELECT * FROM public.test_rule;
-- Empty set (execution time: 0 ms; total time: 16 ms)

SET ROLE user_b; -- Partial Privilaged User
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: user_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE user_c; -- Un-Privilaged User
SELECT * FROM public.test_rule;
-- ERROR: permission denied for relation test

SET ROLE group_a; -- 1st Group
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: group_a is required to be a member of all of these groups: {group_a,group_b}

SET ROLE group_b; -- 2nd Group
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: group_b is required to be a member of all of these groups: {group_a,group_b}

SET ROLE table_owner; -- Table Owner
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: table_owner is required to be a member of all of these groups:
{group_a,group_b}

SET ROLE postgres; -- Superuser
SELECT * FROM public.test_rule;
-- ERROR: security_check(): User: postgres is required to be a member of all of these groups: {group_a,group_b}

Check with Empty Data Set

Results:

© Fred Hutchinson Cancer Research Center 46

Our Criteria

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

User

Partial

Privileged

User

Privileged

User

Superuser Table Owner

CRITERIA

Feature Chart

Style User

SELECT’s

on

Object

owned by

table_owner

Empty Table / With Data

Un-

Privileged

user_c

Partial

Privileged

user_b

Privileged

user_a

Superuser Table Owner

TABLE with

RULE and

FUNCTION

Upgrading the Function

While we are only dealing with users that are directly

granted access to the group, you may wish to deal with

inherited roles. We can create a simple recursive function

to lookup this information. Because the user is a member

of these group, we can use the set role function to switch

to that group to look up what groups that group belongs to,

we just need to set the user back afterwards.

© Fred Hutchinson Cancer Research Center 47

CREATE OR REPLACE FUNCTION public.applicable_roles (lookup name)
RETURNS SETOF information_schema.applicable_roles AS
$body$
DECLARE

original_user NAME;
r RECORD;

BEGIN
original_user = current_user;
EXECUTE 'SET ROLE ' || quote_ident(lookup);
FOR r IN SELECT * FROM information_schema.applicable_roles WHERE grantee = current_user LOOP

RETURN NEXT r;
RETURN QUERY SELECT * FROM public.applicable_roles(r.role_name);

END LOOP;
EXECUTE 'SET ROLE ' || quote_ident(original_user);

END;
$body$
LANGUAGE 'plpgsql’
VOLATILE
RETURNS NULL ON NULL INPUT
SECURITY INVOKER;

Upgrading the Function

We want to have the same permission denied errors that

an unprivileged user would receive on a normal table. This

can be achieved by passing in the relation, aka table or

view name, into the function and then updating our error

messages.

© Fred Hutchinson Cancer Research Center 48

SET ROLE table_owner;
CREATE OR REPLACE FUNCTION public.security_check
(check_roles name [], relation name)
RETURNS boolean AS $body$

DECLARE r RECORD;
BEGIN

-- Checks to see if NULL was passed
IF array_length(check_roles,1) IS NULL THEN

RAISE EXCEPTION 'check_roles argument of security_check() is null' USING ERRCODE =
'null_value_not_allowed', HINT = 'security_check(): Must specify roles to be checked.’;

END IF;
IF relation IS NULL THEN

RAISE EXCEPTION 'relation argument of security_check() is null' USING ERRCODE =
'null_value_not_allowed', HINT = 'security_check(): Must specify relation being checked.’;

END IF;
-- Check to see if the current_user is a direct member of the check_roles
-- SELECT ((SELECT array_agg(role_name::name) FROM information_schema.applicable_roles WHERE

grantee = current_user)
SELECT ((SELECT array_agg(role_name::name)
FROM public.applicable_roles(current_user)) @> check_roles) AS security_check
INTO r;
IF r.security_check = TRUE THEN

-- current_user was found to be a member of all check_roles
RETURN TRUE;

ELSE
-- current_user was NOT found to be a member of all check_roles
RAISE EXCEPTION 'permission denied for relation %', relation USING ERRCODE =

'insufficient_privilege', HINT = 'security_check(): User: ' || current_user || ' is required to be a
member of all of these groups: {' || array_to_string(check_roles, ',', 'NULL') || '}’;

END IF;
END; $body$ LANGUAGE 'plpgsql' STABLE CALLED ON NULL INPUT SECURITY INVOKER;

Upgrading the Function

© Fred Hutchinson Cancer Research Center 49

GRANT EXECUTE ON FUNCTION public.security_check(check_roles name [], relation name) TO PUBLIC;

SET ROLE user_b;
SELECT public.security_check(null, null);
-- ERROR: check_roles argument of security_check() is null
-- HINT: security_check(): Must specify roles to be checked.

SELECT public.security_check(ARRAY['group_a'::name, 'group_b'::name], null);
-- ERROR: relation argument of security_check() is null
-- HINT: security_check(): Must specify roles to be checked.

SELECT public.security_check(ARRAY[null::name], 'test_rule'::name);
-- ERROR: permission denied for relation test_rule
-- HINT: security_check(): User: user_b is required to be a member of all of these groups: {NULL}

SELECT public.security_check(ARRAY['group_a'::name, 'group_b'::name], 'test_rule'::name)
-- ERROR: permission denied for relation test_rule
-- HINT: security_check(): User: user_b is required to be a member of all of these groups:
{group_a,group_b}

Speed Testing

Speed Testing

Thanks to Jeremy Schneider, Amazon AWS, for doing

speed testing using PostgreSQL build version 10.4 from

yum.postgresql.org.

Re-reading your blog, your code for speed testing does the

trick and is a little nicer than my code. :) i could have just

used that, tweaking for wider rows. I prefer this, and it's

easy enough to do 'testing'||repeat('X',58).

© Fred Hutchinson Cancer Research Center 51

insert into public.test
select random()*9000000+100000, md5(random()::text)||repeat('X',58)
from generate_series(1,10000) g1
cross join generate_series(1,100) g2;

insert into public.test select * from public.test;
insert into public.test select * from public.test;

select count(*) from test;
count

4,000,000
(1 row)

Time: 358.332 ms

select pg_relation_size('test’);
pg_relation_size

504,127,488
(1 row)

Results & Speed Test:

© Fred Hutchinson Cancer Research Center 52

Our Criteria

Style User SELECT’s

on

Object owned

by table_owner

Empty Table / With Data With Data

Un-Privileged User Partial Privileged

User

Privileged User Superuser Table Owner Speed Test

CRITERIA

Feature Chart

Style User SELECT’s

on

Object owned

by table_owner

Empty Table / With Data With Data

Un-Privileged user_c Partial Privileged

user_b

Privileged user_a Superuser Table Owner Speed Test

TABLE 990.815 ms

VIEW 1,081.979 ms

FUNCTION 2,093.991 ms

TABLE with

POLICY 9.5+

2,023.267 ms

TABLE with

POLICY

(FORCE’d) 9.5+

2,028.994 ms

TABLE with RULE 1,064.975 ms

VIEW with

FUNCTION

1,255.351 ms

~1.25 s

TABLE with

POLICY and

FUNCTION *

129,706.047 ms

~2.16 m

TABLE with RULE

and FUNCTION

1,198.303 ms

Conclusion

Take Away

• There is nothing that meets our full criteria.

• We ended up going with the View with Function due to the tighter security

over the Table with Policy and Function.

• When querying as a partially privileged user, aka user_b, the Table with

Policy and Function, we can get different results depending on the

PostgreSQL version.

• Setting the volatility of the function to stable in PostgreSQL 9.6 will throw a

permission denied error where as in PostgreSQL 10 you will get an empty

table returned. My writing and testing was done in Postgres 9.4.

© Fred Hutchinson Cancer Research Center 54

