
1© 2019 All rights reserved.

YugaByte DB
Distributed PostgreSQL on Google Spanner Architecture

Karthik Ranganathan
Mihnea Iancu

Mar 21, 2019



2© 2019 All rights reserved.

Introduction

Karthik Ranganathan

Co-Founder & CTO, YugaByte
Nutanix Facebook Microsoft

IIT-Madras, University of Texas-Austin

@karthikr

Mihnea Iancu

Software Engineer, YugaByte
Spark SQL YSQL

PhD, Jacobs University Bremen

@mihnea_iancu



3© 2019 All rights reserved.

High Performance
Low Latency Queries

Cloud Native
Multi-Cloud and Kubernetes Ready

Distributed SQL DB
PostgreSQL compatible, Elasticity, Fault-Tolerance

YugaByte DB

Massive Scale
Millions of IOPS, TBs per Node 



4© 2019 All rights reserved.

YugaByte DB
Built For Microservices



5© 2019 All rights reserved.

Workload Patterns in Microservices

Internet-Scale OLTP

Optimize for scale, performance

High throughput, low latency

70% of microservice access pattern

Audit trail, stock market data, 
shopping cart and checkout, 
messaging, user history, etc.

Cloud-Scale SQL

Scale-out RDBMS

Needs query flexibility

Needs referential integrity and joins

Smaller by volume but critical

CRM and ERP applications, supply 
chain management, billing services, 

reporting applications

Distributed SQL



6© 2019 All rights reserved.

Workload Patterns Fall in a Range

Cloud-Scale
SQL

Scale-out
RDBMS

SINGLE-KEY ACCESS MULTI-KEY ACCESS

BLAZING FAST (SUB-MS) FAST (SINGLE-DIGIT MS)
DATA MODELING RICHNESS

QUERY PERFORMANCE 



7© 2019 All rights reserved.

Design Follows a Layered Approach

tablet 1’

tablet 1’

tablet 1’

QUERY LAYER
Extensible Query Layer

DISTRIBUTED DOCUMENT STORE
Transactional, High Performance, Globally Distributed

RUN ON ANY HARDWARE/IAAS



8© 2019 All rights reserved.

Query Layer Supports Distributed Postgres

tablet 1’

tablet 1’

tablet 1’

DISTRIBUTED, DOCUMENT STORE
Transactional, High Performance, Globally Distributed

RUN ON ANY HARDWARE/IAAS

YCQL
SQL-Based Flexible Schema API

YSQL
Globally Distributed Postgres API



9© 2019 All rights reserved.

Core Features of DocDB

tablet 1’

tablet 1’

tablet 1’

RUN ON ANY HARDWARE/IAAS

YCQL
SQL-Based Flexible Schema API

YSQL
Globally Distributed Postgres API

Self-Healing, Fault-Tolerant

Auto Sharding & Rebalancing

ACID Transactions

Global Data Distribution

High Perf, Low Latency



10© 2019 All rights reserved.

Runs on Bare-metal, VMs, Docker/Kubernetes

tablet 1’

tablet 1’

tablet 1’

Self-Healing, Fault-Tolerant

Auto Sharding & Rebalancing

ACID Transactions

Global Data Distribution

High Throughput, Low Latency

YCQL
SQL-Based Flexible Schema API

YSQL
Globally Distributed Postgres API



11© 2019 All rights reserved.

DocDB
A Google Spanner-like

Distributed, Document Store



12© 2019 All rights reserved.

Design Goals

• CAP Theorem
• Consistent
• Partition Tolerant
• HA on failures 

(new leader elected in seconds)

• Transaction Support
• Single-row linearizable txns
• Multi-row txns
• Serializable
• Snapshot

• High Performance
• All layers in C++ to ensure high perf
• Run on large memory machines
• Optimized for SSDs

• Run anywhere
• No external dependencies
• No need for Atomic Clocks
• Bare metal, VM and Kubernetes



13© 2019 All rights reserved.

How Does DocDB Work?

tablet 1’

Let’s start with this logical 
view of a table

… … …



14© 2019 All rights reserved.

Each Row is a Document

tablet 1’

A row maps to a document, each column to an attribute

… … …
DocumentKey (primary key values) =>
{

column1: value1,
column2: value2,
…

}



15© 2019 All rights reserved.

Tables are Sharded into Tablets

tablet 1’

Now partition the table 
using some strategy

… … …

Each partition is a tablet. A row 
belongs to exactly one tablet.

Tablet #1

Tablet #2

.

.

.



16© 2019 All rights reserved.

Tablets are Replicated across Nodes

tablet 1’

Tablet Peer 1 on Node X

Tablet #1

Tablet Peer 2 on Node Y

Tablet Peer 3 on Node Z



17© 2019 All rights reserved.

How Replication works

tablet 1’

Raft Leader

Uses Raft Algorithm

First elect Tablet Leader



18© 2019 All rights reserved.

How Replication works

tablet 1’

Raft Leader

Writes processed by leader:

Send writes to all peers
Wait for majority to ack

Write



19© 2019 All rights reserved.

How Replication works

tablet 1’

Raft Leader

Reads handled by leader

Uses Leader Leases for perf

Read



20© 2019 All rights reserved.

Single-Key Linearizability

tablet 1’

Raft Leader

This system is now linearizable, HA,
fault tolerant with high-performance

But no distributed transactions yet!



21© 2019 All rights reserved.

What do Distributed Transactions need?

tablet 1’

Updates should get written at the same physical time

Raft Leader Raft Leader

BEGIN TXN
UPDATE k1
UPDATE k2

COMMIT

But how will nodes agree on time?



22© 2019 All rights reserved.

Use a Physical Clock

tablet 1’

You would need an Atomic Clock or two lying around

Atomic Clocks are highly available,
globally synchronized clocks with tight error bounds

Most of my physical clocks are never synchronized

Jeez! I’m fresh out of those.



23© 2019 All rights reserved.

Hybrid Logical Clock or HLC

tablet 1’

Combine coarsely-synchronized physical clocks with 
Lamport Clocks to track causal relationships

(physical component, logical component)

synchronized using NTP a monotonic counter

Nodes update HLC on each Raft exchange for things like 
heartbeats, leader election and data replication



24© 2019 All rights reserved.

No Need For Atomic Clocks

tablet 1’

Raft Leader

Uses Hybrid Logical Clock

With NTP synchronization



25© 2019 All rights reserved.

Read more at
blog.yugabyte.com

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-storage-layer/

Storage layer details:

https://blog.yugabyte.com/
https://docs.yugabyte.com/quick-start/


26© 2019 All rights reserved.

YSQL
The PostgreSQL Query Layer



27© 2019 All rights reserved.

Design Goals

• PostgreSQL compatible
• Re-uses PostgreSQL code base
• New changes do not break existing PostgreSQL functionality
• Aim towards building a pluggable distributed storage engine

• Enable migrating to newer PostgreSQL versions
• New features are implemented in a modular fashion
• Integrate with new PostgreSQL features in an on-going fashion
• E.g. Moved from PostgreSQL 10.4 à 11.2 in a few weeks!

• Cloud native design
• Designed for running natively in Kubernetes
• Make drivers cluster aware over time 
• Support multi—zone and geographically replicated deployments



28© 2019 All rights reserved.

Design Goals - Feature-set Support
• All data types
• Built-in functions and expressions
• Various kinds of joins
• Constraints (primary key, foreign key, unique, not null, check)
• Secondary indexes (incl. multi-column & covering columns)
• Distributed transactions (Serializable and Snapshot Isolation)
• Views
• Stored Procedures
• Triggers



29© 2019 All rights reserved.

Existing PostgreSQL Architecture

CLIENT Postmaster
(Authentication, authorization)

Rewriter Planner

OptimizerExecutor

WAL Writer BG Writer…

DISK

Reuse
Stateless 

PostgreSQL



30© 2019 All rights reserved.

DocDB as Storage Engine

CLIENT Postmaster
(Authentication, authorization)

Rewriter Planner

OptimizerExecutor

YugaByte 
Node

YugaByte 
Node …… YugaByte 

Node

Replace 
table storage 
with DocDB



31© 2019 All rights reserved.

Make PostgreSQL Stateless

CLIENT Postmaster
(Authentication, authorization)

Rewriter Planner

OptimizerExecutor

YugaByte 
Node

YugaByte 
Node …… YugaByte 

Node

Enhance 
planner, 

optimizer, and 
executor for 

distributed DB



32© 2019 All rights reserved.

All Nodes are Identical

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT

Can connect to ANY node

YugaByte Node YugaByte Node YugaByte Node



33© 2019 All rights reserved.

All Nodes are Identical

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL APP
Not affected by

node failures

YugaByte Node YugaByte Node YugaByte Node

Fault tolerant
can survive node 

failures

Stateless tier
connect to any 

live node



34© 2019 All rights reserved.

YSQL
Using distributed PostgreSQL



35© 2019 All rights reserved.

Creating YSQL Tables

• YSQL Tables
• User tables map to one DocDB table
• Each index maps to a separate DocDB table
• PostgreSQL system catalogs map to special DocDB tables
• Used for schema enforcement
• Handle views, foreign tables, stored procedures, etc.

• YSQL Rows
• Each row maps to one document in DocDB: key à document
• The primary key column(s) map to the document key
• Tables without primary key use an internal ID (logically a row-id)



36© 2019 All rights reserved.

System Catalogs are Special Tables

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT

System Catalog Leader
Denoted by solid line

System Catalog Followers
Denoted by dotted line

System catalogs are replicated tables with 1 tablet



37© 2019 All rights reserved.

Creating a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
1) CREATE TABLE



38© 2019 All rights reserved.

Creating a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
2) RECORD SCHEMA



39© 2019 All rights reserved.

Creating a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
3) RAFT REPLICATE



40© 2019 All rights reserved.

Creating a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
4) CREATE DOCDB TABLETS



41© 2019 All rights reserved.

Using YSQL Tables

• Single-row Operations
• Reads and writes handled by DocDB tablet leader
• YSQL query layer is aware of clustering and partitioning
• Will route queries to the right node (tablet leader).

• Multi-row Operations
• Implemented using DocDB distributed transactions
• E.g. insert into table with one index will perform the following:

BEGIN DOCDB DISTRIBUTED TRANSACTION
insert into index values (…)
insert into table values (…)

COMMIT



42© 2019 All rights reserved.

INSERTING DATA

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
INSERT ROW



43© 2019 All rights reserved.

INSERTING DATA

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
INSERT INTO TABLET LEADER



44© 2019 All rights reserved.

INSERTING DATA

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
RAFT REPLICATE DATA



45© 2019 All rights reserved.

Read more at
blog.yugabyte.com

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-storage-layer/
Storage layer details:

https://blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-
layer/

Query layer details:

https://blog.yugabyte.com/
https://docs.yugabyte.com/quick-start/
https://blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-layer/


46© 2019 All rights reserved.

PostgreSQL Meets Spanner!

• Leverage PostgreSQL features
• Built-in expressions and functions
• Joins, Aggregations, Views
• Stored Procedures, Triggers
• Extensions like Foreign Data Wrappers (FDW) 

• Leverage Spanner-like DocDB features
• Linear Scalability
• Fault Tolerance with high availability
• Run natively in Kubernetes
• Zero Downtime SQL database
• Alter schema
• Rolling software upgrades
• Change machine types



47© 2019 All rights reserved.

DEMO
Try it yourself!



48© 2019 All rights reserved.

Questions?
Try it at docs.yugabyte.com/quick-start

Check us out on GitHub
https://github.com/YugaByte/yugabyte-db

https://docs.yugabyte.com/quick-start/
https://github.com/YugaByte/yugabyte-db

