
The wonders of CTE’s

Introduction to
Common Table Expressions

What is The “Common Table Expression”
The CTE can be seen as a collection of temp tables with data that you need for an
overall larger query.

A CTE can also include Delete,Insert and Update operators opposed to only the
Select statement.

It’s a more readable alternative to nested functions.

And a bonus to using a CTE is that it makes use of the query planer to create an
optimal execution plan.

Well get back to Recursive CTE’s

Basic Syntax

The Basic Syntax is composed of 4 Elements:

● WITH : This shows the initialization of a CTE
● <alias> AS : the alias of the Expresion
● (expression): the actual expression that will be used in the final query
● The call statement

WITH
 eg_ AS
 (
 SELECT my_column FROM my_table
)
SELECT * FROM eg_

Basic Example

WITH orders_ AS (
 SELECT * from
 orders
 LEFT JOIN
 order_details
 USING(orderid)
)

SELECT * from orders_

Comparing a CTE with a Nested Query

WITH orders_ AS (
 SELECT * from
 Orders
 LEFT JOIN
 Order_details
 USING(orderid)
)
,top_sellers AS (
 SELECT
 Productid
 FROM orders_
 GROUP BY productid
 HAVING
 SUM(unitprice*quantity) >=
 (select SUM(unitprice*quantity)/count(*) from orders_)
)
SELECT * FROM products
WHERE productid in (SELECT productid FROM top_sellers)

select * from products
 where productid in
 (
 select productid
 from
 Orders
 left join
 Order_details
 using(orderid)
 group by productid
 having
 SUM(unitprice*quantity) >=
 (
 select SUM(unitprice*quantity)/count(*) from
 Orders
 left join
 Order_details
 using(orderid)
)
 order by SUM(unitprice*quantity)/count(*)
)

CTE Nested Query

Look familiar

Look familiar

Return the items that sold more than the average of all sales

Selecting from a CTE
WITH suppliers_ AS(
 select * from suppliers
)
,products_ AS(
 select * from products
)
,order_details_ AS(
 select * from order_details
)
,orders_ AS(
 select * from orders
)
,the_join AS (
select * from
 orders_ o
 left join
 order_details_ od using(orderid)
 left join
 products_ p using(productid)
 left join
 suppliers_ s using(supplierid)
)
select * from the_join

WITH suppliers_ AS (
 select * from suppliers
)
,products_ AS(
 select * from products
)
,order_details_ AS(
 select * from order_details
)
,orders_ AS(
 select * from orders
)
,the_join AS (
select * from
 orders_ o
 left join
 order_details_ od using(orderid)
 left join
 products_ p using(productid)
 left join
 suppliers_ s using(supplierid)
)
select * from orders_

Using an Update in a CTE

WITH orders_ AS (
 SELECT * from
 Orders
 LEFT JOIN
 Order_details
 USING(orderid)
)
,top_sellers AS(
 SELECT
 Productid
 FROM orders_
 GROUP BY productid
 HAVING
 SUM(unitprice*quantity) >=
 (select SUM(unitprice*quantity)/count(*) from orders_)
 order by SUM(unitprice*quantity) limit 10
)
,Update_top_sellers AS (
 update products
 set top_seller = TRUE
 WHERE productid in (SELECT productid FROM top_sellers)
)
,Update_rest AS (
 update products
 set top_seller = FALSE
 WHERE productid not in (SELECT productid FROM top_sellers)
)
Select * from products where top_seller = True

Using a Delete in a CTE

WITH moved_rows AS (
 DELETE FROM dummy_orders
 WHERE orderdate between '1996-07-01' AND '1996-08-01'
 RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;

Using a Insert in a CTE

WITH moved_rows AS (
 DELETE FROM dummy_orders
 WHERE orderdate between '1996-07-01' AND '1996-08-01'
 RETURNING *
)
,Insert_rows AS(
 INSERT INTO products_log
 SELECT * FROM moved_rows
)
select * from products_log;

Recursive CTE’s Basic Syntax

WITH RECURSIVE my_recursive_cte(a_counter) AS (
 values(1)
 union all
 select a_counter+1 from my_recursive_cte
)
select * from my_recursive_cte WHERE a_counter< 5

Quick practical example of a recursive CTE
WITH RECURSIVE fake_data (orderid, productid, unitprice, quantity, discount, total_) AS (
 SELECT
 (SELECT max(orderid)::integer FROM dummy_order_details) AS orderid
 , 0 as productid , 0.00::real as unitprice , 0 as quantity , 0 as discount , 0.00::real as total_
 UNION ALL
 SELECT
 fake_data.orderid , products.productid , products.unitprice , fake_data.quantity , fake_data.discount::integer
 , fake_data.total_ + (products.unitprice * fake_data.quantity)::real AS total_
 FROM
 (
 SELECT
 orderid + 1 AS orderid ,round(random() * 77)::integer + 1 AS productid , unitprice ,(random() * 10)::integer + 1 AS quantity , discount , total_
 FROM fake_data
) fake_data
 LEFT JOIN products
 USING (productid)
 WHERE total_ < 20000
)
 SELECT * FROM fake_data where total_ <> 0

Thank You

I will now be taking Questions

● https://momjian.us/main/presentations/sql.html
● https://www.postgresql.org/docs/11/queries-with.html
● https://www.youtube.com/watch?v=VY5wdA8HIv0

https://momjian.us/main/presentations/sql.html
https://www.postgresql.org/docs/11/queries-with.html
https://www.youtube.com/watch?v=VY5wdA8HIv0

