
JSON-B, Does it solve everything?

What are the benefits and drawbacks of using JSONB

Who Am I

• Anson Abraham

• Data Architect and Cloud Architect
with Envisagenics.

• Envisagenics is an AI based Biotech
doing Drug discovery in the cloud
analyzing RNA data from Cancer
Patients.

• We’re a Postgres shop. Leveraging
Azure Databases for Postgres (which in
this case is PostgreSQL 10.1).

Not going to compare to other Doc Stores

1. MongoDB

2. Amazon DynamoDB

3. Amazon DocumentDB

4. Azure CosmosDB

5. RethinkDB

6. CouchBase

7. ArrangoDB

8. ElasticSearch/Solr

WHAT IS JSON(B)

• A new data type introduced in PostgreSQL 9.4 as a way to store a valid JSON elements in a table.

• JSON is stored in plain text

• JSONB is stored in binary representation

• Example of a JSON element:

• { "ID":"001","name": "Ven", "Country": "Australia", "city": "Sydney", "Job Title":"Database

Consultant"}

• Here are some valid JSONB expressions:

Difference Between JSON and JSONB

JSON

▪ Pretty much like a TEXT data type
which stores only valid JSON
document.

▪ Stores the JSON documents as-is
including white spaces.

▪ Does not support FULL-TEXT-
SEARCH or GIN Indexing

▪ Does not support wide range of
JSON functions and operators

JSONB

▪ Stores the JSON documents in
Binary format.

▪ Trims off white spaces and
stores in a format conducive for
faster and efficient searches

▪ Supports FULL-TEXT-SEARCH
and GIN Indexing.

▪ Supports all the JSON functions
and operators

Very quickly, JSONB supports some operators that JSON doesn’t

JSON JSONB

anson=> select * from test_json where data @> '{"lastname":"Abraham"}';

ERROR: operator does not exist: json @> unknown

LINE 1: select * from test_json where data @> '{"lastname":"Abraham"...

^

HINT: No operator matches the given name and argument type(s). You

might need to add explicit type casts.

anson=> select * from test_jsonb where data @> '{"lastname":"Abraham"}'

id | data

----+--

--

1 | {"age": "", "email": "anson.abraham@gmail.com", "title": "Your Master",

"social": {"twitter": "@ansonism", "facebook": "n/a", "linkedin": "anson.abraham",

"instagram": "n/a"}, "lastname": "Abraham", "firstname": "Anson"}

(1 row)

anson=> \d test_json

Table "public.test_json"

Column | Type | Collation | Nullable | Default

--------+---------+-----------+----------+---------------------------------------

id | integer | | not null | nextval('test_json_id_seq'::regclass)

data | json | | |

• @> or <@

• || : Concatenate two jsonb values into a new jsonb value

What are the benefits of using JSONB

• For datasets with many optional values, it is often impractical or impossible to include each one as a table column.

In cases like these, JSONB can be a great fit, both for simplicity and performance.

• It also supports nested documents

• JSONB supports integrity constraints

• You can easily update the value to the key in JSONB or add a key or nested doc in the existing key

• JSONB Supports Indexes on Key’s inside document or nested document

• You can put GIN INDEXes on JSONB objects!

• standard SQL and JSONB can be used in the same transactional context, with a tight integration that allows

converting JSONB to records (and vice-versa).

• Because it’s postgres it still supports ACID.

• Good for RAD, when doing POC’s.

GIN INDEXING on JSONB

• GIN stands for Generalized Inverted Index. GIN is designed for handling cases where the items to be

indexed are composite values, and the queries to be handled by the index need to search for element

values that appear within the composite items.

• GIN Indexes the entire document

• Queries could be searches for documents containing specific words.

• ONE Drawback to GIN indexes:

• takes up more added space than a normal b-tree index.

• Will be added overhead when running a DML statement.

Example of JSONB table

Indexing on JSONB

WithOut Index With Index

INDEX on JSONB Azure PG

anson=> select * from

measurements where record -

>> 'id' = '3000';

id | record

----+--------

(0 rows)

Time: 242.691 ms

anson=> CREATE INDEX ix_measurements_jsonbid on

measurements((record->>'id'));

anson=> select * from measurements where record ->> 'id'

= '3000';

id | record

----+--------

(0 rows)

Time: 3.337 ms

Table has 1 million rows

anson=> \d measurements

Table "public.measurements"

Column | Type | Collation | Nullable | Default

--------+---------+-----------+----------+--

id | integer | | not null | nextval('measurements_id_seq'::regclass)

record | jsonb | | |

Integrity Constraints on JSONB

The Caveats to JSONB

1. Slow Queries Due To Lack Of Statistics

2. Comparison operators will not work if using GIN indexes (unless you use jsonb_path_ops)

3. Larger Table Footprint

1. Does not preserve white space

4. It’s stricter

5. Does not preserve the order of object keys

6. Size limitation

Lack of Statistics

For traditional data types, PostgreSQL stores statistics about

the distribution of values in each column of each table, such as:

• the number of distinct values seen

• the most common values

• the fraction of entries that are NULL

• for ordered types, a histogram sketch of the distribution of values in the column

CREATE TABLE measurements (

tick BIGSERIAL PRIMARY KEY,

value_1 INTEGER,

value_2 INTEGER,

value_3 INTEGER,

scientist_id BIGINT

);

CREATE TABLE scientist_labs (scientist_id BIGSERIAL

PRIMARY KEY, lab_name TEXT);

ANALYZE;

SELECT lab_name, COUNT(*)

FROM (

SELECT scientist_id

FROM measurements

WHERE

value_1 = 0 AND

value_2 = 0 AND

value_3 = 0

) m

JOIN scientist_labs AS s

ON (m.scientist_id = s.scientist_id)

GROUP BY lab_name;

CREATE TABLE measurement2 (tick BIGSERIAL PRIMARY KEY,

record JSONB);

INSERT INTO measurement2 (record)

SELECT (

'{ "value_1":' || trunc(2 * random()) ||

', "value_2":' || trunc(2 * random()) ||

', "value_3":' || trunc(2 * random()) ||

', "scientist_id":' || trunc(10000 * random() + 1) || ' }')::JSONB

FROM generate_series(0, 999999) i

SELECT lab_name, COUNT(*)

FROM (

SELECT (record ->> 'scientist_id')::BIGINT AS scientist_id

FROM measurement2

WHERE

(record ->> 'value_1')::INTEGER = 0 AND

(record ->> 'value_2')::INTEGER = 0 AND

(record ->> 'value_3')::INTEGER = 0

) m

JOIN scientist_labs AS s

ON (m.scientist_id = s.scientist_id)

GROUP BY lab_name;

On Azure PG Non-JSON

Added Indexes on Measurements table on value_n and scientist ID: Time: 4.336 ms

No Indexes Measurements table on value_n and scientist ID: Time: 10.170 ms

Azure PG JSON

No INDEX: Time: 951.118 ms

B-Tree index: Time: 886.455 ms

GIN INDEX Time: 865.447 ms

Larger table footprint

CREATE TABLE measurements (tick BIGSERIAL PRIMARY KEY, record JSONB);

CREATE TABLE measurements2 (tick BIGSERIAL PRIMARY KEY, value_1 INT, value_2 INT,

value_3 INT);

INSERT INTO measurements (record)

SELECT (

'{ "value_1":' || trunc(2 * random()) ||

', "value_2":' || trunc(2 * random()) ||

', "value_3":' || trunc(2 * random()) ||

', "scientist_id":' || trunc(10000 * random() + 1) || ' }')::JSONB

FROM generate_series(0, 999999);

• the initial non-JSONB version of our table (measurements2) takes up 79 mb of disk space

• the JSONB variant (measurements) takes 164 mb

• OVER 50% more data space used!

Cons of JSONB (cont)

• jsonb is stricter, and as such, it disallows Unicode escapes for non-ASCII characters (those above

U+007F) unless the database encoding is UTF8. It also rejects the NULL character (\u0000), which

cannot be represented in PostgreSQL's text type.

• It does not preserve white space, and it will strip your JSON strings of leading/lagging white space as

well as white space within the JSON string, all of which will just untidy your code (which might not be a

bad thing for you after all.)

• It does not preserve the order of object keys, treating keys in pretty much the same way as they are

treated in Python dictionaries -- unsorted. You'll need to find a way around this if you rely on the order

of your JSON keys.

What if Document exceeds size for JSONB?

Horizontal partitioning?

• You can create multiple tables and then have a join in a view per the key in table.

• Drawback:

• you’re maintaining multiple tables for one record

• Postgres does not do this automatically with sharding.

External DocStore DB (ex: MongoDB)

• MongoDB has size limitations as well (100MB).

• mongoDB does do automatic sharding.

• Need to create a FDW in postgres to return results from mongo or write code to do an “app join”

between postgres and mongo.

Foreign Data Wrappers.

• Foreign Table : this is about how to access external data sources and present them as relational tables.

• Datalink : this extends the functionality of database systems to include control over external files without the

need to store their contents directly in the database, such as LOBs. A column of a table could directly refer a

file.

What about The Hybrid Approach?

• Data which has columns that will always be constant have that as “static” column in table and

attaching new events to data can be in jsonb.

• CREATE TABLE measurements (tick bigint, val1 int, val2 int, val3 int, record jsonb).

• If you’re doing a lookup in the jsonb, create either an index on key or gin index on whole

thing.

• CREATE GIN INDEX ix_measurements_gin on measurements (record);

• CREATE INDEX ix_measurements_record_key1 on measurements (record - - >> ‘key’);

• Make sure document doesn’t exceed over 268435455 bytes!!!

Some common examples of using JSONB

• Event tracking data, where you may want to include the payload in the event which might vary

• Gaming data is especially common, especially where you have single player games and have a changing

schema based on the state of the user

• Tools that integrate multiple data sources, an example here may be a tool that integrates customers databases

to Salesforce to Zendesk to something else. The mix of schemas makes doing this in a multitenant fashion

more painful than it has to be.

• Maybe TimeSeries data(?)

• Blockchain data

• Genomic Data

When NOT to use JSON-B

• Using it as a key-value store. That’s what redis and aerospike are for.

• If you do, gonna need some really expensive ultra ssd disks.

• Storing Spatial Data. → Err … POSTGIS?

• Store an entire PDF like doc. First, going to have size issues, when parsing. Two Use Elastic Search

• If you have reccurring properties (columns) … use a table. That’s what RDBMS’ were built for.

• Highly Transactional traffic. If writes are required to be nano-seconds fast. Suggest to use Cassandra.

Some Alternative DocStores out there

• MongoDB: Most popular one out there. Good luck with that.

• RethinkDB: They did close shop, though community is supporting it

• ArrangoDB

• AWS DocumentDB

• Azure CosmoDB.

Acknowledgement / Footnote

• Craig Kerstein: Citus Data (http://www.craigkerstiens.com)

• Marc Linster: EnterpriseDB

• Dan Robinson: Heap.IO (https://heap.io/blog/author/drob)

• https://explain.depesz.com

http://www.craigkerstiens.com/
https://heap.io/blog/author/drob

In conclusion

In most cases JSONB is good when looking for a NoSQL, schema-less, datatype. JSONB isn’t always a fit in

every data model. However, it’s always better to normalize as we saw earlier. If you do have a schema that has

a large number of optional columns (such as with event data) or the schema differs based on tenant id then

JSONB can be a great fit. In general you want:

• JSONB - In most cases

• JSON - If you’re just processing logs, don’t often need to query, and use as more of an audit trail.

