
http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Debugging With
PostgreSQL
— A Strategic

Approach
• Debugging is the elephant in the

room

• Can take 50 to 90% of the time

• But gets < 10% of the attention!

• PostgreSQL has great tools (see
references)

• But they are most effective when
deployed as part of an overall
strategy

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

“Debugging is about:”

• Finding the source of a problem

• Identifying possible causes

• Testing out hypotheses

• Eliminating that cause

• Ensuring it will never happen again

Debugging has everything to do with
finding the source of a problem in a

code base,
identifying the possible causes,

testing out hypotheses until the ultimate
root cause is found, and then eventually

eliminating that cause and
ensuring it will never happen again.

— John Sonmez
https://simpleprogrammer.com/

Sounds a lot like the
scientific method!

http://www.timeandquantummechanics.com
https://simpleprogrammer.com/effective-debugging

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Introduction

• First database

• First bug

• Root cause

• Life cycle
approach

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

The First Databases

• Clay tablets

• Taxes

• Origin of
writing &
counting

• Fully baked!

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

The first Bug

• Middle English
“scarecrow”,
“hobgoblin”

• Edison 1878

• Hopper 1945

• Error in process,
not just an error

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

The root cause
• Depending on

project, 10 to 50 to
90% of effort

• Generally self-
inflicted

• Can also be the result
of bitrot, evolving
system, changing
expectations …

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Life cycle

• Development

• Debugging

• Maintenance

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Development

• Specs

• Structure

• Story

• Scenes

• Systems

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

The Wreck of the Vasa

• Top heavy design

• Last minute changes

• Unnecessary features

• Not enough ballast

• It is never the King’s
fault

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Structure
• Tables = bones

• Foreign keys = tendons

• Stored procedures = muscle

• Views = skin

• Domains = types of cells

• Exceptions = nerves?

• Logs = memory?

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Story
• Tell me a story

• Database as telephone
exchange in time

• Use cases

• Mr. Client, meet Ms.
Server

• Getting the picture

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Break Story into Scenes

• Block out the code

• Make a good entrance

• Identify the characters

• Rehearse the scene

• Make a good exit

• Get audience feedback

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Systems Test

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Debugging

• Detection

• Digging into the
machine

• Taking your best
shot at the bug

• Prevention

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Detection

• Exceptions

• Error logging

• PGBadger &
friends

• User reports

• …

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Debugging How To

• Write perfect code

• Cat in a box

• Flatten ‘em

• Eyeball the code

• Give ‘em a taste of
science!

• Divide et impera

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Write perfect code

• At a conference, I
asked Bjarne:

• How do I debug C++?

• “Write perfect code!”

• Annoying …

• But not without a
grain of truth

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Cat in a Box

• Claw in every direction
until you see daylight

• Sometimes necessary

• Futzing

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Linear Debugging

• Raise notice, print
statements

• Debuggers

• Linear process, so
slow

• Should usually be
the last resort

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Hairy Eyeball

• Sight check

• Don’t compile till you
think it will work

• If you can’t check by
sight, the module is
too big

• Get a 2nd pair of eyes
on the problem

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Scientific approach

• Why seen here?

• But not here?

• Can we reproduce the bug
at will?

• Can we isolate the bug?

• What is the minimal test
case?

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Gozinta’s good,
Comezouta’s Bad

• Double check the Gozinta’s
anyway

• Do basic cleanup first: FKs,
types, check constraints, …

• Don’t guess, instrument

• Check entrance values and
returns

• Prefer binary search to linear;
keep cutting the hiding space for
bugs in half

Lots of weird,
complicated stuff

happens

Comezouta’s
Bad

Part 1 ? Weird/2

Part 2 ? Weird/2

Gozinta’s good

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Left side Works …

• Find one case that fails

• And one that works

• Walk them towards
each other

• Using binary search
(roughly 50% chance
of bug in each half)

Works Fails 50/
eit-

w

50
her
ay

Bad

…right side Fails

Good ?

Gozinta’s good

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Remediation

• 50% of bug fixes create
a new bug

• Old code often conceals
critical business logic

• Laparoscopy

• Madame La Guillotine

• Hybrid approaches

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Kaizen
(Continuous Improvement)

• Find root cause, not just
immediate trigger

• Bugs travel in packs:
look for similar
problems

• Report earlier

• Prevent entirely

• Eliminate the possibility

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Maintenance

• Reporting

• Monitoring

• Technical debt

• Remediation

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Reporting the Next Bug

• Exception handling

• Error logs & tables

• PGBadger & other
tools

• Helping users report
errors

• Walking the beat

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Monitoring
• pg_stat_activity,

pg_stat_statements,
…

• PGBadger & other
tools

• Purpose-built

• Momjian’s blog
https://momjian.us

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Technical Debt

• Overcoming code
fear

• Stylistic analysis

• Laparoscopy

• “Watch out for
stobor!”

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

Remediation
• Much of our lives but

little of our literature

• Above all, do no harm

• Think globally, act locally

• When and how to
refactor

• When it is time for “The
Big Rewrite”

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

General Principles
• Consider short & long

term economics

• Take a systems level
approach

• Work one step at a
time

• Know your machine

• Know yourself

http://www.timeandquantummechanics.com

http://timeandquantummechanics.comStrategic Debugging/Ashmead — PostgresConf: Philly/Wharton — July 19th, 2019

References

• RTFM

• Mlodginski - PL/pgSQL
Debugging

• Kernighian, Ritchie - Elements of
Programming Style

• Booth - The Mythical Man-month

• Pirzig - Zen and the Art of Motor
cycle Maintenance

http://www.timeandquantummechanics.com

