
Full-throttle running on Terabytes log-data

HeteroDB,Inc
Chief Architect & CEO

KaiGai Kohei <kaigai@heterodb.com>

Self-Introduction

 KaiGai Kohei (海外浩平)

 Chief Architect & CEO of HeteroDB

 Contributor of PostgreSQL (2006-)

 Primary Developer of PG-Strom (2012-)

 Interested in: Big-data, GPU, NVME/PMEM, ...

about myself

about our company

 Established: 4th-Jul-2017

 Location: Shinagawa, Tokyo, Japan

 Businesses:

✓ Sales & development of high-performance data-processing
software on top of heterogeneous architecture.

✓ Technology consulting service on GPU&DB area. PG-Strom

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data3

What is PG-Strom?

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data4

 Transparent GPU acceleration for analytics and reporting workloads

 Binary code generation by JIT from SQL statements

 PCIe-bus level optimization by SSD-to-GPU Direct SQL technology

 Columnar-storage for efficient I/O and vector processors

PG-Strom is an extension of PostgreSQL for terabytes scale data-processing
and inter-operation of AI/ML, by utilization of GPU and NVME-SSD.

App

GPU

off-loading

for IoT/Big-Data

for ML/Analytics

➢ SSD-to-GPU Direct SQL
➢ Columnar Store (Arrow_Fdw)
➢ Asymmetric Partition-wise

JOIN/GROUP BY
➢ BRIN-Index Support
➢ NVME-over-Fabric Support

➢ Procedural Language for
GPU native code (PL/CUDA)

➢ NVIDIA RAPIDS data frame
support (WIP)

➢ IPC on GPU device memory

PG-Strom as an open source project

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data5

Official documentation in English / Japanese
http://heterodb.github.io/pg-strom/

Many stars ☺

Distributed under GPL-v2.0

Has been developed since 2012

▌Supported PostgreSQL versions

 PostgreSQL v11.x, v10.x and v9.6.x

▌Related contributions to PostgreSQL
 Writable FDW support (9.3)

 Custom-Scan interface (9.5)

 FDW and Custom-Scan JOIN pushdown (9.5)

▌Talks at PostgreSQL community
 PGconf.EU 2012 (Prague), 2015 (Vienna), 2018 (Lisbon)

 PGconf.ASIA 2018 (Tokyo), 2019 (Bali, Indonesia)

 PGconf.SV 2016 (San Francisco)

 PGconf.China 2015 (Beijing)

http://heterodb.github.io/pg-strom/

Terabytes scale log-data
processing on PostgreSQL

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data6

System image of log-data platform

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data7

Manufacturing Logistics Mobile Home electronics

 Any kind of devices generate various form of log-data.

 People want/try to find out insight from the data.

 Data importing and processing must be rapid.

 System administration should be simple and easy.

JBoF: Just Bunch of Flash

NVME over
Fabric

(RDMA)

DB Admin

BI Tools

Machine-learning
applications

e.g, anomaly detection

shared
data-frame

PG-Strom

Why elephant is cobalt blue, not yellow.

▌Here is PGconf.ASIA 2019 :-)

▌Standalone system is much simpler than multi-node cluster system.

▌Engineers are familiar with PostgreSQL for more than 10 years

▌How many users actually have petabytes scale data?

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data8

How much data size we expect? (1/3)

▌This is a factory of an international top-brand company.

▌Most of users don’t have bigger data than them.

Case: A semiconductor factory managed up to 100TB with PostgreSQL

Total 20TB
Per Year

Kept for
5 years

Defect
Investigation

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data9

How much data size we expect? (2/3)

Nowadays, 2U server is capable for 100TB capacity

model Supermicro 2029U-TN24R4T Qty

CPU Intel Xeon Gold 6226 (12C, 2.7GHz) 2

RAM 32GB RDIMM (DDR4-2933, ECC) 12

GPU NVIDIA Tesla P40 (3840C, 24GB) 2

HDD Seagate 1.0TB SATA (7.2krpm) 1

NVME Intel DC P4510 (8.0TB, U.2) 24

N/W built-in 10GBase-T 4

8.0TB x 24 = 192TB
How much is it?

60,932USD
by thinkmate.com

(31st-Aug-2019)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data10

How much data size we expect? (3/3)

On the other hands, it is not small enough.

TB

TB

TB
B

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data11

Weapons to tackle terabytes scale data

• SSD-to-GPU Direct SQL

• Direct data transfer pulls out maximum
performance of NVME for SQL workloads

Efficient
Storage

• Arrow_Fdw

• Columnar store that is optimal for both
of I/O throughput and vector processors

Efficient
Data Structure

• PostgreSQL Partitioning &
Asymmetric Partition-wise JOIN

• Prune the range obviously unreferenced
Partitioning

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data12

PG-Strom: SSD-to-GPU Direct SQL

Efficient Storage

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data13

GPU’s characteristics - mostly as a computing accelerator

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data14

Over 10years history in HPC, then massive popularization in Machine-Learning

NVIDIA Tesla V100

Super Computer
(TITEC; TSUBAME3.0) Computer Graphics Machine-Learning

Today’s Topic

How I/O workloads are accelerated by GPU that is a computing accelerator?

Simulation

A usual composition of x86_64 server

GPUSSD

CPU

RAM

HDD

N/W

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data15

Data flow to process a massive amount of data

CPU RAM

SSD GPU

PCIe

PostgreSQL
Data Blocks

Normal Data Flow

All the records, including junks, must be loaded
onto RAM once, because software cannot check
necessity of the rows prior to the data loading.

So, amount of the I/O traffic over PCIe bus tends
to be large.

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data16

Unless records are not loaded to CPU/RAM once, over the PCIe bus,
software cannot check its necessity even if they are “junk” records.

SSD-to-GPU Direct SQL (1/4) – Overview

CPU RAM

SSD GPU

PCIe

PostgreSQL
Data Blocks

NVIDIA GPUDirect RDMA

It allows to load the data blocks on NVME-SSD
to GPU using peer-to-peer DMA over PCIe-bus;
bypassing CPU/RAM. WHERE-clause

JOIN

GROUP BY

Run SQL by GPU
to reduce the data size

Data Size: Small

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data17

v2.0

Background - GPUDirect RDMA by NVIDIA

Physical
address space

PCIe BAR1 Area

GPU
device

memory

RAM

NVMe-SSD Infiniband
HBA

PCIe devices

GPUDirect RDMA

It enables to map GPU device
memory on physical address

space of the host system

Once “physical address of GPU device memory”
appears, we can use is as source or destination
address of DMA with PCIe devices.

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data18

0xf0000000

0xe0000000

DMA Request

SRC: 1200th sector
LEN: 40 sectors
DST: 0xe0200000

SSD-to-GPU Direct SQL (2/4) – System configuration and workloads

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data19

Supermicro SYS-1019GP-TT

CPU Xeon Gold 6126T (2.6GHz, 12C) x1

RAM 192GB (32GB DDR4-2666 x 6)

GPU NVIDIA Tesla V100 (5120C, 16GB) x1

SSD
Intel SSD DC P4600 (HHHL; 2.0TB) x3
(striping configuration by md-raid0)

HDD 2.0TB(SATA; 72krpm) x6

Network 10Gb Ethernet 2ports

OS
Red Hat Enterprise Linux 7.6
CUDA 10.1 + NVIDIA Driver 418.40.04

DB
PostgreSQL v11.2
PG-Strom v2.2devel

■ Query Example (Q2_3)
SELECT sum(lo_revenue), d_year, p_brand1

FROM lineorder, date1, part, supplier
WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_category = 'MFGR#12‘
AND s_region = 'AMERICA‘

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1;

customer
12M rows

(1.6GB)

date1
2.5K rows
(400KB)

part
1.8M rows
(206MB)

supplier
4.0M rows
(528MB)

lineorder
2.4B rows
(351GB)

Summarizing queries for typical Star-Schema structure on simple 1U server

SSD-to-GPU Direct SQL (3/4) – Benchmark results

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data20

 Query Execution Throughput = (353GB; DB-size) / (Query response time [sec])

 SSD-to-GPU Direct SQL runs the workloads close to the hardware limitation (8.5GB/s)

 about x3 times faster than filesystem and CPU based mechanism

2343.7 2320.6 2315.8 2233.1 2223.9 2216.8 2167.8 2281.9 2277.6 2275.9 2172.0 2198.8 2233.3

7880.4 7924.7 7912.5
7725.8 7712.6 7827.2

7398.1 7258.0

7638.5 7750.4
7402.8 7419.6

7639.8

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Q1_1 Q1_2 Q1_3 Q2_1 Q2_2 Q2_3 Q3_1 Q3_2 Q3_3 Q3_4 Q4_1 Q4_2 Q4_3

Q
u

er
y

Ex
ec

u
ti

o
n

 T
h

ro
u

gh
p

u
t

[M
B

/s
]

Star Schema Benchmark on 1xNVIDIA Tesla V100 + 3xIntel DC P4600

PostgreSQL 11.2 PG-Strom 2.2devel

SSD-to-GPU Direct SQL (4/4) – Software Stack

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data21

Filesystem
(ext4, xfs)

nvme_strom
kernel module

NVMe SSD

PostgreSQL

pg_strom
extension

read(2) ioctl(2)

Operating
System
Software
Layer

Database
Software
Layer

blk-mq

nvme pcie nvme rdma

Network HBA

NVMe
Request

Network HBANVMe SSD

NVME-over-Fabric Target

RDMA over
Converged
Ethernet

GPUDirect RDMA

Translation from logical location
to physical location on the drive

■ Other software
■ Software by HeteroDB
■ Hardware

Special NVME READ command that
loads the source blocks on NVME-
SSD to GPU’s device memory.

External
Storage
Server

Local
Storage
Layer

PG-Strom: Arrow_Fdw (Columnar Store)

Efficient Data Structure

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data22

Background: Apache Arrow (1/2)

▌Characteristics

 Column-oriented data format designed for analytics workloads

 A common data format for inter-application exchange

 Various primitive data types like integer, floating-point, date/time and so on

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data23

PostgreSQL / PG-Strom

NVIDIA GPU

Background: Apache Arrow (2/2)

Apache Arrow Data Types PostgreSQL Data Types extra description

Int int2, int4, int8

FloatingPoint float2, float4, float8 float2 is an enhancement of PG-Strom

Binary bytea

Utf8 text

Bool bool

Decimal numeric

Date date adjusted to unitsz = Day

Time time adjusted to unitsz = MicroSecond

Timestamp timestamp adjusted to unitsz = MicroSecond

Interval interval

List array types Only 1-dimensional array is supportable

Struct composite types

Union ------

FixedSizeBinary char(n)

FixedSizeList ------

Map ------

Most of data types are convertible between Apache Arrow and PostgreSQL.

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data24

Log-data characteristics (1/2) – WHERE is it generated on?

ETL

OLTP OLAP

Traditional OLTP&OLAP – Data is generated inside of database system

Data
Creation

IoT/M2M use case – Data is generated outside of database system

Log
processing

BI Tools

BI Tools

Gateway Server

Data
Creation

Data
Creation

Many Devices

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data25

Data Importing becomes a heavy time-consuming operations for big-data processing.

Data
Import

Import!

Background – FDW (Foreign Data Wrapper)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data26

 FDW module is responsible to transform external data into PostgreSQL internal data.

 In case of Arrow_Fdw, it maps Arrow-files on the filesystem as foreign-table.

➔ Just mapping, so no need to import the external data again.

Foreign Table – it allows to read (and potentially write) external data source
as like normal PostgreSQL tables, for SQL commands.

PostgreSQL
Table

Foreign Table

postgres_fdw

Foreign Table

file_fdw

Foreign Table

twitter_fdw

Foreign Table

Arrow_fdw

External RDBMS

CSV Files

Twitter (Web API)

Arrow Files

SSD-to-GPU Direct SQL on Arrow_Fdw (1/3)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data27

▌Why Apache Arrow is beneficial?
 Less amount of I/O to be loaded; only referenced columns
 Higher utilization of GPU core; by vector processing and wide memory bus
 Read-only structure; No MVCC checks are required on run-time

It transfers ONLY Referenced Columns over SSD-to-GPU Direct SQL mechanism

PCIe Bus

NVMe SSD

GPU

SSD-to-GPU P2P DMA

WHERE-clause

JOIN

GROUP BY

P2P data transfer
only referenced columns

GPU code supports Apache
Arrow format as data source.

Runs SQL workloads in parallel
by thousands cores.

Write back the small results built
as heap-tuple of PostgreSQLResults

metadata

SSD-to-GPU Direct SQL on Arrow_Fdw (2/3) – Benchmark results

 Query Execution Throughput = (353GB; DB or 310GB; arrow) / (Query response time[s])

 Combined use of SSD-to-GPU Direct SQL and Columnar-store pulled out 15GB-49GB/s
query execution throughput according to the number of referenced columns.

 See p.10 for the server configuration; just 1U-rackserver with 1 CPU+1 GPU+3 SSD

2343.7 2320.6 2315.8 2233.1 2223.9 2216.8 2167.8 2281.9 2277.6 2275.9 2172.0 2198.8 2233.3

7880.4 7924.7 7912.5 7725.8 7712.6 7827.2 7398.1 7258.0 7638.5 7750.4 7402.8 7419.6 7639.8

49038

27108

29171 28699
27876

29969

19166
20953 20890

22395

15919 15925
17061

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

Q1_1 Q1_2 Q1_3 Q2_1 Q2_2 Q2_3 Q3_1 Q3_2 Q3_3 Q3_4 Q4_1 Q4_2 Q4_3

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
h

ro
u

gh
p

u
t

[M
B

/s
]

Star Schema Benchmark on 1xNVIDIA Tesla V100 + 3xIntel DC P4600

PostgreSQL 11.2 PG-Strom 2.2devel PG-Strom 2.2devel + Arrow_Fdw

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data28

SSD-to-GPU Direct SQL on Arrow_Fdw (3/3) – Validation of the results

Foreign table "public.flineorder"

Column | Type | Size
--------------------+---------------+--------------------------------
lo_orderkey | numeric | 35.86GB
lo_linenumber | integer | 8.96GB
lo_custkey | numeric | 35.86GB
lo_partkey | integer | 8.96GB
lo_suppkey | numeric | 35.86GB <-- ★Referenced by Q2_1
lo_orderdate | integer | 8.96GB <-- ★Referenced by Q2_1
lo_orderpriority | character(15) | 33.61GB <-- ★Referenced by Q2_1

lo_shippriority | character(1) | 2.23GB
lo_quantity | integer | 8.96GB
lo_extendedprice | bigint | 17.93GB
lo_ordertotalprice | bigint | 17.93GB
lo_discount | integer | 8.96GB
lo_revenue | bigint | 17.93GB
lo_supplycost | bigint | 17.93GB <-- ★Referenced by Q2_1

lo_tax | integer | 8.96GB
lo_commit_date | character(8) | 17.93GB
lo_shipmode | character(10) | 22.41GB

FDW options: (file '/opt/nvme/lineorder_s401.arrow') ... file size = 310GB

▌Only 96.4GB of 310GB was actually read from NVME-SSD (31.08%)

▌Execution time of Q2_1 is 11.06s, so 96.4GB / 11.06s = 8.7GB/s

➔ It is a reasonable performance for 3x Intel DC P4600 on single CPU configuration

Almost equivalent raw data transfer, but no need to copy unreferenced columns.

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data29

Generation of Apache Arrow files

✓ Simply, specifies the SQL to run by “-c” and Arrow-
file to be written by “-o” option.

$./pg2arrow -h
Usage:

pg2arrow [OPTION]... [DBNAME [USERNAME]]
General options:

-d, --dbname=DBNAME database name to connect to
-c, --command=COMMAND SQL command to run
-f, --file=FILENAME SQL command from file
-o, --output=FILENAME result file in Apache Arrow format

Arrow format options:
-s, --segment-size=SIZE size of record batch for each

(default is 256MB)

Connection options:
-h, --host=HOSTNAME database server host
-p, --port=PORT database server port
-U, --username=USERNAME database user name
-w, --no-password never prompt for password
-W, --password force password prompt

Debug options:
--dump=FILENAME dump information of arrow file
--progress shows progress of the job.

Pg2Arrow command saves SQL results in Arrow-format.

Apache Arrow
Data Files

Arrow_Fdw

Pg2Arrow

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data30

PostgreSQL Partitioning and
PCIe-bus level optimization

Partitioning

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data31

Log-data characteristics (2/2) – INSERT-only

✓ MVCC visibility check is (relatively) not significant.

✓ Rows with old timestamp will never inserted.

INSERT
UPDATE
DELETE

INSERT
UPDATE
DELETE

Transactional Data Log Data

with
timestamp

current

2018

2017

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data32

Configuration of PostgreSQL partition for log-data (1/2)

▌Mixture of PostgreSQL table and Arrow foreign table in partition declaration

▌Log-data should have timestamp, and never updated

➔ Old data can be moved to Arrow foreign table for more efficient I/O

logdata_201812

logdata_201901

logdata_201902

logdata_current

logdata table
（PARTITION BY timestamp）

2019-03-21
12:34:56

dev_id: 2345
signal: 12.4

Log-data with
timestamp

PostgreSQL tables

Row data store
Read-writable but slot

Arrow foreign table

Column data store
Read-only but fast

Unrelated child tables are skipped,
if query contains WHERE-clause on the timestamp

E.g) WHERE timestamp > ‘2019-01-23’
AND device_id = 456

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data33

Configuration of PostgreSQL partition for log-data (2/2)

logdata_201812

logdata_201901

logdata_201902

logdata_current

logdata table
（PARTITION BY timestamp）

2019-03-21
12:34:56

dev_id: 2345
signal: 12.4

logdata_201812

logdata_201901

logdata_201902

logdata_201903

logdata_current

logdata table
（PARTITION BY timestamp）

a month
later

Extract data of
2019-03

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data34

▌Mixture of PostgreSQL table and Arrow foreign table in partition declaration

▌Log-data should have timestamp, and never updated

➔ Old data can be moved to Arrow foreign table for more efficient I/O

Log-data with
timestamp

PCIe-bus level optimization (1/3)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data35

Physical data distribution, and utilization of closest GPU

CPU CPU

PCIe
switch

SSD GPU

PCIe
switch

SSD GPU

PCIe
switch

SSD GPU

PCIe
switch

SSD GPU

logdata
201812

logdata
201901

logdata
201902

logdata
201903

Near is Better

Far is Worse

PCIe-bus level optimization (2/3)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data36

By P2P DMA over PCIe-switch, major data traffic bypass CPU

CPU CPU

PCIe
switch

SSD GPU

PCIe
switch

SSD GPU

PCIe
switch

SSD GPU

PCIe
switch

SSD GPU

SCAN SCAN SCAN SCAN

JOIN JOIN JOIN JOIN

GROUP BY GROUP BY GROUP BY GROUP BY

Pre-processed Data (very small)

GATHER GATHER

PCIe-bus level optimization (3/3)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data37

Supermicro
SYS-4029TRT2

x96 lane
PCIe

switch

x96 lane
PCIe

switch

CPU2 CPU1
QPI

Gen3
x16

Gen3 x16
for each
slot

Gen3 x16
for each
slotGen3

x16

▌HPC Server – optimization for GPUDirect RDMA

▌I/O Expansion Box

NEC ExpEther 40G
(4slots edition)

Network
Switch

4 slots of
PCIe Gen3 x8

PCIe
Swich

40Gb
Ethernet

CPU

NIC

Extra I/O Boxes

Special Optimization – Combined GPU Kernel

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data38

Reduction of “Data Ping-Pong” is a key of performance

GpuScan
kernel

GpuJoin
kernel

GpuPreAgg
kernel

GPU

CPU

Storage

GPU
Buffer

GPU
Buffer

results

DMA
Buffer

Agg
(PostgreSQL)

Combined GPU kernel for SCAN + JOIN + GROUP BY

data size
= Large

data size
= Small

DMA
Buffer

SSD-to-GPU
Direct SQL

DMA
Buffer

No data transfer ping-pong

Asymmetric Partition-wise JOIN (1/5)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data39

lineorder

lineorder_p0

lineorder_p1

lineorder_p2

reminder=0

reminder=1

reminder=2

customer date

supplier parts

tablespace: nvme0

tablespace: nvme1

tablespace: nvme2

Records from partition-leafs must be backed to CPU and processed once!

Scan

Scan

Scan

Append

Join

Agg

Query
Results

Scan

Massive records
must be processed

on CPU

Asymmetric Partition-wise JOIN (2/5)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data40

lineorder

lineorder_p0

lineorder_p1

lineorder_p2

reminder=0

reminder=1

reminder=2

customer date

supplier parts

Push down JOIN/GROUP BY, even if smaller half is not a partitioned table.

Join

Append

Agg

Query
Results

Scan

Scan

PreAgg

Join

Scan

PreAgg

Join

Scan

PreAgg

tablespace: nvme0

tablespace: nvme1

tablespace: nvme2

Very small number of partial
results of JOIN/GROUP BY
shall be gathered on CPU.

※ This feature is now under proposition
for the PostgreSQL 13 commit fest.

Asymmetric Partition-wise JOIN (3/5)

postgres=# explain select * from ptable p, t1 where p.a = t1.aid;

QUERY PLAN

--

Hash Join (cost=2.12..24658.62 rows=49950 width=49)

Hash Cond: (p.a = t1.aid)

-> Append (cost=0.00..20407.00 rows=1000000 width=12)

-> Seq Scan on ptable_p0 p (cost=0.00..5134.63 rows=333263 width=12)

-> Seq Scan on ptable_p1 p_1 (cost=0.00..5137.97 rows=333497 width=12)

-> Seq Scan on ptable_p2 p_2 (cost=0.00..5134.40 rows=333240 width=12)

-> Hash (cost=1.50..1.50 rows=50 width=37)

-> Seq Scan on t1 (cost=0.00..1.50 rows=50 width=37)

(8 rows)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data41

Asymmetric Partition-wise JOIN (4/5)

postgres=# set enable_partitionwise_join = on;

SET

postgres=# explain select * from ptable p, t1 where p.a = t1.aid;

QUERY PLAN

--

Append (cost=2.12..19912.62 rows=49950 width=49)

-> Hash Join (cost=2.12..6552.96 rows=16647 width=49)

Hash Cond: (p.a = t1.aid)

-> Seq Scan on ptable_p0 p (cost=0.00..5134.63 rows=333263 width=12)

-> Hash (cost=1.50..1.50 rows=50 width=37)

-> Seq Scan on t1 (cost=0.00..1.50 rows=50 width=37)

-> Hash Join (cost=2.12..6557.29 rows=16658 width=49)

Hash Cond: (p_1.a = t1.aid)

-> Seq Scan on ptable_p1 p_1 (cost=0.00..5137.97 rows=333497 width=12)

-> Hash (cost=1.50..1.50 rows=50 width=37)

-> Seq Scan on t1 (cost=0.00..1.50 rows=50 width=37)

-> Hash Join (cost=2.12..6552.62 rows=16645 width=49)

Hash Cond: (p_2.a = t1.aid)

-> Seq Scan on ptable_p2 p_2 (cost=0.00..5134.40 rows=333240 width=12)

-> Hash (cost=1.50..1.50 rows=50 width=37)

-> Seq Scan on t1 (cost=0.00..1.50 rows=50 width=37)

(16 rows)

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data42

Asymmetric Partition-wise JOIN (5/5)

May be available
at PostgreSQL v13

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data43

(Near) Future works & Conclusion

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data44

Benchmarks on HPC Server (1/2)

CPU2 CPU1

SerialCables
dual PCI-ENC8G-08A

(U.2 NVME JBOF; 8slots) x2

NVIDIA
Tesla V100 x4

45

PCIe
switch

PCIe
switch

PCIe
switch

PCIe
switch

Gen3 x16
for each slot

Gen3 x16
for each slot

via SFF-8644 based PCIe x4 cables
(3.2GB/s x 16 = max 51.2GB/s)

Intel SSD
DC P4510 (1.0TB) x16

SerialCables
PCI-AD-x16HE x4

WIP

Now facilities are
under arrangement.

We shall have
benchmark project
at Sep/Oct-2019.

Supermicro
SYS-4029GP-TRT

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data

Capable to process
up to 100TB grade

log-data in single node

By 4 units parallel execution,
100 - 120GB/s effective data

processing capability

By columnar storage,
25 - 30GB/s effective data

transfer per unit

Benchmarks on HPC Server (2/2)

QPI

Towards effective 100GB/s performance by PCIe bus optimization and columnar-storage

CPU2CPU1RAM RAM

PCIe-SW PCIe-SW

NVME0

NVME1

NVME2

NVME3

NVME4

NVME5

NVME6

NVME7

NVME8

NVME9

NVME10

NVME11

NVME12

NVME13

NVME14

NVME15

GPU0 GPU1 GPU2 GPU3HBA0 HBA1 HBA2 HBA3

8.0 - 10GB/s physical data
transfer performance
per (GPU + 4 SSD) unit

46

PCIe-SW PCIe-SW

JBOF unit-0 JBOF unit-1

WIP

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data

Future works

▌Asymmetric Partition-wise JOIN (PostgreSQL v13)

▌MVCC checks on GPU device

▌Data-frame exchange over GPU device memory (NVIDIA RAPIDS)

▌RHEL8 support (Linux kernel driver)

▌DRAM access reductions on GpuJoin

▌More reliable statistics framework

▌Enlargement of regression test cases

▌……and so on

PG-Strom development team welcomes your volunteership!

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data47

Conclusion

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data48

▌Characteristics of Log-data

 INSERT-only

 Must be imported once

 Always have timestamp

▌Weapons we can use

 SSD-to-GPU Direct SQL

 Arrow_Fdw

 PostgreSQL Partitioning

 PCIe-bug level optimization

▌Why PostgreSQL?

 Standalone system is much simple and inexpensive than cluster.

 Engineers have been familiar with PostgreSQL over 10 years.

Full utilization of H/W, optimized data structure, and proper partitioning
enable terabytes scale data-processing on a standalone PostgreSQL system.

Resources

PGconf.ASIA 2019 - Full-throttle running on Terabytes log-data49

▌Repository

 https://github.com/heterodb/pg-strom

 https://heterodb.github.io/swdc/

▌Documents

 http://heterodb.github.io/pg-strom/

▌Contact
 kaigai@heterodb.com

 Tw: @kkaigai

https://github.com/heterodb/pg-strom
https://heterodb.github.io/swdc/
http://heterodb.github.io/pg-strom/

