
Scaling AWS
Redshift
Concurrency with
Postgres
By Elliott Cordo, Will Liu, Paul Singman

Integrated luxury and lifestyle company with offerings centered on
movement, nutrition, and regeneration

we operate more than 200 locations within every major city across the country
in addition to London and Canada

Analytics Overview

1. Extract data from source systems

2. Transform raw data
into useful metrics

3. Analyze, report, and
visualize

ETL

Data Warehouse Reporting & Analytics Apps
Third Party Integrations
ML Modeling & Insights

DB DB

CRM Click
stream

ERP API

Finance FTP

Why A Data
Warehouse?

• Prevent data discrepancies

• Lower employee learning curve

• Avoid duplicating logic in multiple systems

• Isolate production DBs from analytic workloads

Presents a single point of failure so we created a data replication failover procedure

Data Ecosystem @ Equinox

Maximilian

1. Extract data from source systems

Data Ecosystem @ Equinox

AWS Redshift

2. Transform raw data
into useful metrics

Maximilian

Redshift Warehouse Structure (J.A.R.V.I.S.)

SQL

Raw Landing Tables

Big piles of SQL

Fact & Dimension Tables

d_facility

d_membership

f_checkin

Smaller piles of SQL

SQLSQL
SQL

Data Marts

Member Profile

Group Fitness

Retail

Data Ecosystem @ Equinox

AWS Redshift

2. Transform raw data
into useful metrics

Maximilian

Data Ecosystem @ Equinox

Equinox Apps
Reporting/Dashboards
Recommender Systems
Internal APIs
Ad-hoc Analysis
3rd Party Data Integrations

3. Analyze, report, and
visualize

Maximilian AWS Redshift

Data Ecosystem @ Equinox

Equinox Apps
Reporting/Dashboards
Recommender Systems
Internal APIs
Ad-hoc Analysis
3rd Party Data Integrations

AWS RedshiftMaximilian

Data Ecosystem @ Equinox

Equinox Apps
Reporting/Dashboards
Recommender Systems
Internal APIs
Ad-hoc analysis
3rd party data integrations

AWS RedshiftMaximilian

Key Features of Redshift

Key Features of Redshift

• Released by AWS in early 2013, based on Postgres v8.0.2

Key Features of Redshift

• Column-oriented storage

Key Features of Redshift

• Immutable 1MB block storage

Key Features of Redshift

• Massively-parallel processing compute engine

Key Features of Redshift

• Native multi-node (leader + workers) architecture

Key Features of Redshift

• Distribution key & sort key table settings

Key Features of Redshift

• Workload Management queue settings

Key Features of Redshift

• Released by AWS in early 2013, based on Postgres v8.0.2

• Column-oriented storage

• Immutable 1MB block storage

• Massively-parallel processing compute engine

• Native multi-node (leader + workers) architecture

• Distribution key & sort key table settings

• Workload Management queue settings

• Petabyte-scale disk storage

• Batch insertions & retrieval

• Complex computations

• High-frequency transactions

• Concurrent user connections

• Petabyte-scale disk storage

• Batch insertions & retrieval

• Complex computations

10x - 100x slower on simple SELECT
500 connection limit (per cluster)
50 connection limit (per user-defined queue)

• High-frequency transactions

• Concurrent user connections

• Petabyte-scale disk storage

• Batch insertions & retrieval

• Complex computations

Warehouse Consumers

AWS Redshift

Equinox Apps

Recommender System

Internal APIs

Ad-hoc Analytics

Reporting/Dashboards

Warehouse Consumers

AWS Redshift

Reporting/Dashboards *

Problem

AWS Redshift

Sales Reporting Architecture

Moso

dbo.agreements

dbo.sales

raw_agreements

raw_ sales

~10 min

membership_sales

AWS Redshift Moso

dbo.agreements

dbo.sales

raw_agreements

raw_ sales

~10 min

membership_sales

Sales Reporting Architecture Problem

10x - 100x slower on simple SELECT
500 connection limit (per cluster)
50 connection limit (per user-defined queue)

Potential Solutions

Potential Solutions

1. Pull from source DB

AWS Redshift

Sales Reporting Architecture

Moso

dbo.agreements

dbo.sales

raw_agreements

raw_ sales

~10 min

membership_sales

Pros

• Source DB is OLTP

Cons

Potential Solutions

1. Pull from source DB

• Sales logic is complex!
• Burdens prod DB

Pros

Cons

2. Cache in Redis

Potential Solutions

1. Pull from source DB

• Sales logic is complex!
• Burdens prod DB

• Source DB is OLTP

AWS Redshift

Sales Reporting Architecture

raw_agreements

raw_ sales

membership_sales

Pros

Cons

2. Cache in Redis

Pros

• Very fast performance

Cons

Potential Solutions

1. Pull from source DB

• Sales logic is complex!
• Burdens prod DB

• Non-relational data structure
• Keys must be created for

every data view

• Source DB is OLTP

Pros

Cons

Pros

• Very fast performance

Cons

Potential Solutions

2. Cache in Redis1. Pull from source DB 3. Copy to another DB

• Sales logic is complex!
• Burdens prod DB

• Non-relational data structure
• Keys must be created for

every data view

• Source DB is OLTP

AWS Redshift

membership_sales

Sales Reporting Architecture

raw_agreements

raw_ sales

1. Pull from source DB

Pros

Cons
• Sales logic is complex!
• Burdens prod DB

Pros
• Very fast performance

Cons
• Non-relational data structure
• Keys must be created for

every data view

3. Copy to another DB

Pros

Cons
• Additional ETL step

Potential Solutions

2. Cache in Redis

• Maintain relational format
• Source DB is OLTP

1. Pull from source DB

Pros

Cons

Pros
• Very fast performance

Cons

3. Copy to another DB

Pros

Cons

Potential Solutions

2. Cache in Redis

• Sales logic is complex!
• Burdens prod DB

• Non-relational data structure
• Keys must be created for

every data view

• Additional ETL step

• Maintain relational format
• Source DB is OLTP

PostgreSQL Foreign Data Wrapper

PostgreSQL Foreign Data Wrapper

https://aws.amazon.com/blogs/big-data/join-amazon-redshift-and-amazon-rds-postgresql-with-dblink

https://aws.amazon.com/blogs/big-data/join-amazon-redshift-and-amazon-rds-postgresql-with-dblink/

AWS Redshift

Proposed Sales Reporting Architecture

raw_agreements

raw_ sales

PostgreSQL

membership_salesmembership_ sales_mv

AWS Redshift

Proposed Sales Reporting Architecture

raw_agreements

raw_ sales

PostgreSQL

membership_salesmembership_ sales_mv

Environment Set-up

✓Create Redshift cluster

✓Create PostgreSQL server (9.5+)

• RDS recommended

• For self-managed, install Postgres contrib package:
• sudo yum install postgresql10-contrib.x86_64

✓Networking (AWS)

• Co-locate in same Availability Zone

• Configure Security Group

Creating the Link

--1 enable the required extensions
CREATE EXTENSION postgres_fdw;
CREATE EXTENSION dblink;

--2 create the external server
CREATE SERVER jarvis

FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'REDSHIFT_ENDPOINT', port '5439’,
dbname 'REDSHIFT_DB_NAME', sslmode 'require');

--3 save redshift login to this external server
CREATE USER MAPPING FOR PG_USERNAME

SERVER Jarvis OPTIONS
(user 'RS_USERNAME', password 'RS_PASSWORD’);

Running queries on PostgreSQL

SELECT *
FROM dblink('jarvis', $REDSHIFT$

SELECT
member_sales_id,
member_id,
sales_action,
sales_action_date

FROM
rs_landing.raw_sales $REDSHIFT$)

AS sales_actions (
member_sales_id varchar(50),
member_id varchar(50),
sales_action varchar(50),
sales_action_date date

);

Leveraging a Materialized View
CREATE MATERIALIZED VIEW pg.membership_sales_copy AS
(

SELECT *
FROM dblink('jarvis', $REDSHIFT$
SELECT

member_sales_id,
member_id,
sales_action,
sales_action_date

FROM
rs.membership_sales $REDSHIFT$

) AS membership_sales_copy (
member_sales_id varchar(50),
member_id varchar(50),
sales_action varchar(50),
sales_action_date date

);

REFRESH materialized VIEW pg.membership_sales_copy;

AWS Redshift

membership_sales

Sales Reporting Architecture

raw_agreements

raw_ sales

dblink

PostgreSQL

membership_ sales_mv

Materialized View Roadblock

AWS Redshift

~10 mins

PostgreSQL

membership_sales_mv membership_sales

Millions
Of records

Change Data Capture for Large Tables

AWS Redshift

dblink

PostgreSQL

membership_sales

membership_sales_cdcmembership_sales_mv

membership_sales

--Step 1: Create staging table in Redshift with last few hours of sales actions
--CREATE TABLE rs_landing.stage_sales_action
DELETE FROM rs.membership_sales_cdc

INSERT INTO rs.membership_sales_cdc
SELECT member_sales_id, member_id, sales_action, sales_action_date
FROM rs.membership_sales
WHERE date >= ' $[?from_date]';

--Step 2: Refresh materialized view in Postgres
REFRESH materialized VIEW pg.membership_sales_mv;

--Step 3: Upsert logic to populate final table in Postgres from materialized view

--temp table to hold last batch
DROP TABLE IF EXISTS cdc_sales;
CREATE TEMP TABLE cdc_sales AS
SELECT * FROM pg.membership_sales_mv;

--update changed records, member_sales_id as the key to identify a unique record
UPDATE pg.membership_sales ms
SET sa.member_id = s.member_id,

ms.sales_action = s.sales_action,
ms.sales_action_date = s.sales_action_date

FROM cdc_sales s
WHERE s.member_sales_id = ms.member_sales_id;

--delete the records we just updated from temp table
DELETE FROM cdc_sales s USING pg.membership_sales ms
WHERE s.member_sales_id = ms.member_sales_id;

--insert new records not found in membership_sales
INSERT INTO pg.membership_sales
SELECT * FROM cdc_sales;

--drop temp table
DROP TABLE cdc_sales;

Redshift

PostgreSQL

Solution

AWS Redshift

membership_sales_cdc

Sales Reporting Architecture

dblink

PostgreSQL

membership_salesmembership_sales_mvmembership_sales

AWS Redshift

membership_sales_cdc

Sales Reporting Architecture

dblink

PostgreSQL

membership_salesmembership_sales_mvmembership_sales

Solution

Learnings &
Notes

• Minimal maintenance on Postgres instance

• Won’t reflect source deletions

• Limited to a few tables

• Flexible for schema evolution

Looking to the
Future…

• Make use of foreign table

• Front-end scaling with read-replicas

• Extensible to other datastores

• Event-based streaming architecture

More to Explore

Q&A

We Are Hiring

Email ITCareers@Equinox.com

• Head of Engineering

• React Native Engineer

• Sr. React Native Engineer

• API Engineer

• SDET Java - Architect

• SDET Javascript - Architect

• SDET Java

• SDET Javascript

• Sr. UX Researcher

Equinox Tech Blog http://tech.equinox.com/

mailto:ITCareers@Equinox.com
http://tech.equinox.com/

