
1© 2019 All rights reserved.

YugabyteDB:
a distributed PostgreSQL database

Bryn Llewellyn
Developer Advocate, Yugabyte, Inc

2© 2019 All rights reserved.

YugaByte DB

High Performance
Low Latency Queries

Cloud Native
Fault Tolerant, Multi-Cloud & Kubernetes Ready

Distributed SQL
PostgreSQL Compatible, 100% Open Source (Apache 2.0)

Massive Scale
Millions of IOPS in Throughput, TBs per Node

3© 2019 All rights reserved.

Design Goals
• PostgreSQL compatible

• Re-uses PostgreSQL query layer
• New changes do not break existing PostgreSQL functionality

• Enable migrating to newer PostgreSQL versions
• New features are implemented in a modular fashion
• Integrate with new PostgreSQL features as they are available
• E.g. Moved from PostgreSQL 10.4 → 11.2 in 2 weeks!

• Cloud native architecture
• Fully decentralized to enable scaling to 1000s of nodes
• Tolerate rack/zone and datacenter/region failures automatically
• Run natively in containers and Kubernetes
• Zero-downtime rolling software upgrades and machine reconfig

4© 2019 All rights reserved.

Functional Architecture

DOCDB
Spanner-Inspired Distributed Document Store

Cloud Neutral: No Specialized Hardware Needed

YugaByte SQL (YSQL)
PostgreSQL-Compatible Distributed SQL API

5© 2019 All rights reserved.

PostgreSQL Transformed into Distributed SQL

6© 2019 All rights reserved.

SQL Feature Depth

• Traditional SQL
• Data types
• Relational integrity (Foreign keys)
• Built-in functions
• Expressions
• JSON column type

• Secondary indexes

• JOINs

• Transactions

• Views

• Advanced SQL

• Partial indexes

• Stored procedures

• Triggers

• Extensions

And more ...

7© 2019 All rights reserved.

Create Table & Insert Data

8© 2019 All rights reserved.

YSQL Tables

• Tables
• Each table maps to one DocDB table
• Each DocDB table is sharded into multiple tablets

• System tables
• PostgreSQL system catalog tables map to special DocDB tables
• All such special DocDB tables use a single tablet

• (Internal) DocDB tables
• Have same key → document format
• Schema enforcement using the table schema metadata

9© 2019 All rights reserved.

Three important numbers

• Replication factor (RF) — an odd number: 3, 5, ...
• Each (conceptual) tablet is stored as RF identical tablet peers

each on its of node
• Fixed at cluster creation time

• Number of nodes
• At least equal to RF — but as big as you need.
• Can increase — or decrease — on demand

• Number of tablets per table
• Currently: fixed by RF and initial number of nodes. Planned: user-specifiable per table.

System Catalog Tables are Special Tables

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT
One tablet of DocDB

System Catalog

11© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

1) CREATE TABLE

12© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

2) RECORD SCHEMA

13© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

3) RAFT REPLICATE

14© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
4) CREATE TABLETS

t1 t2 t3 t1 t2 t3 t1 t2 t3

15© 2019 All rights reserved.

Insert Data into Tables

• Primary keys
• The primary key column(s) map to a single document key
• Each row maps to one document in DocDB
• Tables without primary key use an internal ID (logically a row-id)

• Secondary indexes
• Each index maps to a separate distributed DocDB table
• DML implemented using DocDB distributed transactions
• E.g: insert into table with one index will perform the following:

BEGIN DOCDB DISTRIBUTED TRANSACTION
 insert into index values (…)
 insert into table values (…)
COMMIT

16© 2019 All rights reserved.

Insert Data

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT ROW

t2 t2 t2

17© 2019 All rights reserved.

Insert Data

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT INTO t2 TABLET LEADER

t2 t2 t2

18© 2019 All rights reserved.

Insert Data

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

RAFT REPLICATE DATA

t2 t2 t2

19© 2019 All rights reserved.

Distributed Transactions

20© 2019 All rights reserved.

Fully Decentralized Architecture

• No single point of failure or bottleneck
• Any node can act as a Transaction Manager

• Transaction status table distributed across multiple nodes
• Tracks state of active transactions

• Transactions have 3 states
• Pending
• Committed
• Aborted

• Reads served only for Committed Transactions
• Clients never see inconsistent data

21© 2019 All rights reserved.

Distributed Transactions - Write Path

22© 2019 All rights reserved.

Distributed Transactions - Write Path

23© 2019 All rights reserved.

Distributed Transactions - Write Path

24© 2019 All rights reserved.

Distributed Transactions - Write Path

25© 2019 All rights reserved.

Distributed Transactions - Write Path

26© 2019 All rights reserved.

Distributed Transactions - Write Path

27© 2019 All rights reserved.

Isolation Levels

• Serializable Isolation
• Read-write conflicts get auto-detected
• Both reads and writes in read-write txns need provisional records
• Maps to SERIALIZABLE in PostgreSQL

• Snapshot Isolation
• Write-write conflicts get auto-detected
• Only writes in read-write txns need provisional records
• Maps to REPEATABLE READ, READ COMMITTED & READ UNCOMMITTED in PostgreSQL

• Read-only Transactions
• Lock free

28© 2019 All rights reserved.

Summary

29© 2019 All rights reserved.

Most Advanced Open Source Distributed SQL

Google Spanner
Query Layer Storage Layer

World’s Most Advanced
Open Source SQL Engine

World’s Most Advanced
Distributed OLTP Architecture

30© 2019 All rights reserved.

Read more at
blog.yugabyte.com

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-storage-layer
Storage Layer

blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-layer
Query Layer

https://blog.yugabyte.com/
https://docs.yugabyte.com/quick-start/
https://blog.yugabyte.com/distributed-postgresql-on-a-google-spanner-architecture-query-layer/

31© 2019 All rights reserved.

Questions?

Download
download.yugabyte.com

Join Slack Discussions
yugabyte.com/slack

Star on GitHub
github.com/YugaByte/yugabyte-db

https://download.yugabyte.com
https://www.yugabyte.com/slack
https://github.com/YugaByte/yugabyte-db

