dWSs

\-/‘7

Shayon Sanyal
Sr Database Specialist SA
AWS

Aurora Global Database
Design Patterns for HA/DR

N

N%

<>

AT

A

[

Agenda

Amazon Aurora: Quick recap

Aurora Global database: Overview

Use cases

Design patterns

Resources

dWS

N—

Amazon Aurora: Quick recap

Aurora decouples storage and query processing

o -)

SQL Database
Transactions node
Caching
Amazon Aurora \) Storage
Processing

Storags e

N

Storage
nodes

\ Amazon S3 aW
>

Scale-out, distributed storage processing
architecture

9 1 Availability Zone 1] . Availability Zone 2 E . Availability Zone 3
e | i
5 o o (@) T [
Purpose-built, log-structured distributed = SQL . SQL i SQL
storage system designed for databases % Transactions Transactions ' ! Transactions
i . § Caching Caching Caching
Storage volume is striped across N N
hundreds of storage nodes distributed
over three different Availability Zones
O
. . . . -O
Six coplies of data, two copies in each s
Availability Zone to protect against o
AZ+1 failures g

Data 1s written in 10 GB protection
groups, growing automatically |
when needed upto 128 TB @

Amazon S3 : =

Amazon Aurora Global database:

Overview 65

Use cases

 Disaster recovery —
promote remote
databases to a primary
for faster recovery in
the event of a disaster

 Data locality — bring
data closer to users in
different Regions to R
enable faster reads

https://aws.amazon.com/solutions/case-studies/smartnews-2021/

dWS

Nt

https://aws.amazon.com/solutions/case-studies/smartnews-2021/

Fast cross-Region disaster recovery

—
Writer @ Reader

Global reads with low-replication latency

Reader ——
@ Writer @ Reader

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

@4 _________ @ eu-west
< -~

us-west ® ~<
us-east Sso

‘~\\\ @ Reader

0

o
ap-southeast

Amazon Aurora Global Database

Faster disaster recovery and enhanced data locality

Architecture:

.2 Physical, log-based asynchronous
Application replication
B Optimized replication service for
Reader Writer |\ eader -¥
g = = data transport
| e 9 Using AWS backbone network
o @*. @ Multiple encrypted connections

us US East reduce jitter
Up to five secondary regions

Amazon Aurora Global Database

| |
' @ Availability - sility zone 2 A : Availability zone 1 Availability zone 2 Availability zone 3
| ! |

|
Appl -ation ; i Application Application Application
I

c R . & =
. | .

: : ‘ :
=) g ; - Aurora Storage

High throughput: Up to 200K writes/sec — negligible performance impact
Low replica lag: Typically < 1 sec cross-country replica lag under heavy load

Fast recovery: < 1 min to accept full read-write workloads after region failure aws

Use case: Distributed Multi-
Region Apps want region local

access for read/write <>

Y

-~

Distributed Multi-Region Apps want region local access for

read/write

-

= o
R Reader Writer Reader
S’
EU West

~
~
=~ R Reader

AP Southeast
Remote writes are forwarded from the local region to the

primary region and sent back

Design pattern: Write Forwarding with Global Read Replicas

Readers in secondary DB clusters accept writes and
forward them to the primary DB cluster writer instance

App A

App B

Oregon Ohio

(Secondary Regio%

-| Write F

Storage

Inbound replication

(Primary Region/

- — =) M

Northern Virginia

(Secondary Region)

Step 0: App writes to read replica in secondary region

Step 1: Writes are forwarded to the primary region 1.

Storage

Inbound replication

Ireland

(Secondary Region)

\4

Inbound replication

Storage

; : adWs
Currently available for Aurora MySQL 2

Design pattern: Write Forwarding with Global Read Replicas

Readers in secondary DB clusters accept writes and
forward them to the primary DB cluster writer instance

Northern Virginia

(Secondary Region)

c
App B App A 2
(10]
=
Oregon Ohio °
)
(Secondary Region) (Primary Regioy _;
Write ack. %
2 Storage
C

Ireland

Storage

Inbound replication

(Secondary Region)

Outbound replication

C
RS,
g
Step O: App writes to read replica in secondary region =
(¢))
Step 1: Writes are forwarded to the primary region N o
Step 2: The primary region acknowledges and commits the transaction (2a) _§ Storage
2a. =
and then replicates the update to all regions (2b) 22 \

; : adWS
Currently available for Aurora MySQL 2

Use case: Customers want to save

costs on DR @

Design pattern: Aurora Global Database Headless Clusters

Aurora Cluster in the secondary

apg11-us-west-2

region without any replicas
attached to storage

Related

Secondary's storage volume is
kept in-sync with the primary DB
cluster

Monitor replication lag using
CloudWatch console

Add a replica before failing over

Saves compute charge at the
cost of higher RTO

dWS

Nt

Use case: Customers want to cap
maximum RPO loss to a limit

<>

I -~

Customers want to cap maximum RPO loss to a limit

* Managing recovery point objective (RPO)

« Global database replication is asynchronous

* Replicas typically lag primary by <1 second

« Data at risk in case of geo-disaster = replication lag

« What if a failure (e.g., network) causes replication to fall
further behind?

« Application needs protection from replica lag that is too high

dWS

N—

Design pattern: Managed RPO

For applications with critical
RPO requirements

You define the maximum Ohio

App

RPO that you allow (primary Regy

If RPO lag in all secondary
Regions exceeds the limit,
Aurora pauses writes until at
least one Region catches up

o "

Replication

service

Northern Virginia

(secondary Region)

L.

Let's see an example where we
set RPO = 20 seconds
= | an ic within tha limit

- Lag in Ireland is back under the limit;
writing has been resumed

RPO lag:
30 seconds
> Replication
service
Ireland
(secondary Region)
q Replication
service
RPO lag:
15 seconds

g

dWs

V

N

Use case: Customers want to meet
DR test regulatory compliance @

requirements
<L

I -~

Customers want to meet DR test regulatory compliance
requirements

« An easy way to test your disaster recovery (DR) setup

« An easy way to relocate your primary Region

« Designed to be used on a healthy Aurora global database cluster
« Promote a secondary Region to be the primary

In a completely automated manner

Without destroying your global database topology

With RPO = 0, writes are stopped until new primary catches up
Without having to replicate previous data

Without interrupting your DR capability

« Point your application to the new primary and you're done

dWS

N—

Design pattern: Managed Planned Failover

In this example, we'll promote

N. Virginia to primary

RPO=0; writes are stopped
until new primary catches up

RTO directly proportional to
AuroraGlobalDBReplicationLag

metric value for all the
secondaries

Ohio

{privnary Region)

secondary

un

Northern Virginia

(secondary Region)

primary

Replication
service

Replication B
service N

Ireland

(secondary Region)

L.

Replication
service

dWS

v7

Use case: Customers need to
recover rapidly on region failu@

<>

I -~

Design pattern: manual unplanned failover

« Used to recover from an unplanned outage in an AWS region

- RPO depends on the AuroraGlobalDBReplicationLag metric value at the
time of failure

« RTO depends on how quickly you can perform the manual failover related
tasks

« Detach & Promote a secondary Region to be the primary

= Stop writes to the Primary
= |dentify a secondary region to use as the new primary DB cluster based on least replication lag
= Detach & promote the secondary region Aurora cluster

« Point your application to the new primary Aurora cluster

« Add secondary AWS regions as needed to re-create the global database
topology

dWS

N—

Use case: Customers want to

reduce RTO

automate tasks on DR failover %

<>

I -~

Design pattern: Endpoint update automation

AWS Database Blog AWS Database Blog

Deploy multi-Region Amazon A lications with a fail .
i/ Automate Amazon Aurora Global Database endpoint management

by Vivek Kumar and Jigna Gandhi | on 23 JUN 2021 | in Amazon Aurora, Amazon Route 53, AWS Lambda | Permalink | # Comments |

by Aditya Samant | on 22 SEP 2021 | in Amazon Aurora, Infrastructure & Automation | Permalink | #® Comments | # Share

™ Share

AWS Cloud
region 1 ch%

readendpoint.com v
writeendpoint.com User Connections O

Amazon Route53 Active Writer Endpoint
CNAME [\acords Route 53

—| o Private Hosted Zone
+
8&(3 -oumplupp.oom—» App Tier ¢

Users Amazon Route53 Elastic Load Balancer A Aurora
Reader ahd Writer VPC VPC

Inactive Writer Endpoint

Replic

+

.l @ N
Global Database ¢

Replication

Secondary Cluster

Primary Cluster

Amazor?Aurora
Reatier

nmndﬁolm.com
writeendpoint.com (placeholder)

Amazon Route53
CNAME Records

https://aws.amazon.com/bloqgs/database/deploy-multi- https://aws.amazon.com/blogs/database/automate-amazon-
region-amazon-aurora-applications-with-a-failover-blueprint aurora-global-database-endpoint-management aWSs

\-/‘7

https://aws.amazon.com/blogs/database/deploy-multi-region-amazon-aurora-applications-with-a-failover-blueprint/
https://aws.amazon.com/blogs/database/automate-amazon-aurora-global-database-endpoint-management/

Use case: Customers want to

failover

automate provisioning and

<>

I -~

Design pattern: Terraform automation for Global Database

AWS Quick Starts

¢
S

2

A Y
TSN Y

9
g
)

Ny
8\

A\
/7

Automated, gold-standard deployments in the AWS Cloud

Quick Starts are automated reference deployments built by Amazon Web Services (AWS) solutions architects and AWS
Partners. Quick Starts help you deploy popular technologies on AWS based on AWS best practices for security and high
availability. These accelerators reduce hundreds of manual procedures into just a few steps so that you can build your

production environment in minutes and start using it immediately.

Each Quick Start includes AWS CloudFormation templates that automate the deployment and a guide that describes the

architecture and provides deployment instructions.

Amazon Connect integrations Amazon EventBridge integrations FAQs Resources

https://aws.amazon.com » quickstart

SEE ALSO
For patterns, techniques, and tips for
building Quick Starts and automating
AWS Cloud DevOps tasks, see the
Infrastructure & Automation blog.

Sort by:

DEVELOPER TOOLS

HashiCorp

¥ Terraform

Terraform modules on AWS

uilt by HashiCorp and

With Terraform modules on Amazon
Web Services (AWS), deploy native
Terraform resources on the AWS Cloud.

Learn more

November 2020

Last update (newest - oldest) v

Building blocks for Terraform-managed resources on AWS

Use Terraform modules on Amazon Web Services (AWS) to deploy native Terraform resources on

Cloud. Terraform modules on AWS are published under an open-source license.

HashiCorp

"V Terraform

Terraform modules on AWS are available in the Terraform registry on the AWS Integration and Automation namespace

page. Use the links provided to access modules in the Terraform registry and source code on GitHub. For module

deployment instructions, refer to the README.md file in the GitHub repository.

Available modules:

Terraform Cloud Workspace
on AWS

Configure a Terraform organization and
workspace on the Amazon Web Services
(AWS) Cloud.

View on the registry.

© See the source code.

Consul-Terraform-Sync on
AWS

Create a listener rule and target group for
an Application Load Balancer.

View on the registry.
© See the source code.

Terraform Amazon ECS on
AWS Fargate

Deploy Amazon Elastic Container Service
(Amazon ECS) on AWS Fargate.

View on the registry.
© See the source code.

Amazon VPC for Terraform
on AWS

Provision Amazon Virtual Private Cloud
(Amazon VPC) resources managed by

Terraform on the Amazon Web Services
(AWS) Cloud.

View on the registry.
© See the source code.

Terraform AWS Transit
Gateway

Provision AWS Transit Gateway resources
managed by Terraform on the Amazon Web
Services (AWS) Cloud.

View on the registry.
© See the source code.

Terraform Amazon SNS

Deploy a Amazon Simple Notification
Service (Amazon SNS) topic.

View on the registry.
© See the source code.

Terraform modules on AWS were developed by
HashiCorp Inc. in partnership with AWS. HashiCorp
is an AWS Partner.

Terraform Amazon Aurora

Provision A wroraTmanaged by
Terraform on the Amazon Web Services
(AWSs) Cloud.

View on the registry.
© See the source code.

Terraform AWS Label

Generate consistent label names and tags
for Terraform resources.

View on the registry.
© See the source code.

Terraform AWS CodeCommit

Deploy AWS CodeCommit to securely host
scalable private Git repositories.

View on the registry.
© See the source code.

dWS

N—

https://aws.amazon.com/quickstart/

Resources

AWS Terraform Workshop

« Amazon Aurora Terraform Module

« Aurora PostqreSQL Global Database Immersion Day

« Aurora MySQL Global Database Immersion Day

« Automated endpoint management for Aurora Global Database Managed Planned failover

« Automate endpoint management for Aurora Global Database unplanned failover

« Automate replication of secrets in AWS Secrets Manager across AWS Regions

© 2021, Amazon Web Services, Inc. or its Affiliates.

adWs

\-/‘7

https://aws-quickstart.github.io/workshop-terraform-modules/10_getting_started.html
https://registry.terraform.io/modules/aws-ia/rds-aurora/aws/latest
https://aurora-pg-lab.workshop.aws/lab9-aurora-global-db.html
https://awsauroralabsmy.com/global/deploy/
https://github.com/aws-samples/amazon-aurora-global-database-endpoint-automation
https://aws.amazon.com/blogs/database/deploy-multi-region-amazon-aurora-applications-with-a-failover-blueprint/
https://aws.amazon.com/blogs/security/how-to-automate-replication-of-secrets-in-aws-secrets-manager-across-aws-regions/

Thank you!

