
© 2023 All Rights Reserved

How to configure
a PostgreSQL cluster
for multitenancy

1

Bryn Llewellyn
Technical Product Manager at Yugabyte

© 2023 All Rights Reserved

linkedin.com/in/bryn-llewellyn/

twitter.com/BrynLite

www.yugabyte.com/blog/author/bryn/

Google for: “PostgreSQL Person of the Week” Bryn

github.com/YugabyteDB-Samples/ysql-case-studies

2

Who am I?

https://www.linkedin.com/in/bryn-llewellyn/
https://twitter.com/BrynLite
http://www.yugabyte.com/blog/author/bryn/
https://postgresql.life/post/bryn_llewellyn/
https://github.com/YugabyteDB-Samples/ysql-case-studies

© 2023 All Rights Reserved

● You know PostgreSQL very well.

● Not a week goes by without you typing SQL at the psql prompt.

● You don’t need me to tell you about the reasons to use SQL.

● You don’t mind that Codd and Date laid the foundations a very long time ago.

● You understand the value of user-defined subprograms and are used to writing them.

● Maybe you even have some exposure to YugabyteDB.

3

Who do I think you are?

© 2023 All Rights Reserved

The YBMT scheme

 (yugabyteDB multitenancy)

4

© 2023 All Rights Reserved

● What requirements does the YBMT scheme meet?

● Why isn’t native PostgreSQL functionality enough?

● What are YBMT’s essential concepts?

● Simple demo.

● Some more detail:
○ Mechanizing database create and drop using psql given that you can’t create or drop a database from

PL/pgSQL.
○ Security definer subprograms for role maintenance.
○ The “zero-privileged” client role.
○ Utilities—esp. user-friendly catalog views and table functions.

● Bonus: quick tour of the actual YSQL case-studies.

5

Agenda

© 2023 All Rights Reserved

Caveat

6

© 2023 All Rights Reserved

● The app uses at least two roles:

○ ≥ “client” role(s). Owns no schema. Lacks “create” on any schema. Functionality comes via privileges.
Client-side code can connect only as a “client” role.

○ ≥ “implementation” role(s). Owns all the schemas and schema-objects.

● The development shop works GitHub-style. The app is defined by its checked-in code.

● Each developer clones the repo, deploys the app in their own sandbox, and has free reign to
change anything there.

● The “pull request” is the gatekeeper for correctness.

● Initial deployment and patching is done by people who authorize using a single password.

7

Envisaged paradigm for the development shop and the deployment site

© 2023 All Rights Reserved

Requirements

8

© 2023 All Rights Reserved

● Must allow an application backend to be designed without thinking about what

other application backends it might be co-installed with*

○ Each application backend must be securely isolated from every other one.

■ The PostgreSQL-native database feature goes a long way to meeting this req’t.
BUT a role is a cluster-wide phenomenon and can own objects in each of several databases.

This is OK for a superuser or a role that is dedicated to provisioning databases or roles.

But in general, a role that owns objects in, or can connect to, more than one database,
thwarts the goals of multitenancy.

○ Must formalize scheme so that a role can connect either to all databases or to exactly one database.

9

What requirements must a scheme like YBMT meet?

* This is not “application multitenancy” by striping the tables using a customer_id column.

© 2023 All Rights Reserved

● A minimal viable cluster has exactly one database that allows connections
(in addition to template databases that don’t allow connections).
This will be special in YBMT. Call it the bootstrap database.

● Must be possible to create any number of additional databases.
Call these tenant databases. All tenant databases must:

○ follow the same rules;
○ expose common utilities (from template1).

● Must formalize and enforce two kinds of role:

○ global role. Must be able to connect to any database. Can own objects in any database.
Must be a fixed set of these, intrinsic to the YBMT scheme.

○ local role. Can connect only to exactly one tenant database.

10

The bootstrap database, tenant databases, global roles and local roles

© 2023 All Rights Reserved

(Briefly.)

● Lock the “bootstrap superuser” (with nologin password null).

● Use a separate superuser to configure as YBMT and for other very rare tasks when they arise.

● Use dedicated role (with nosuperuser createdb createrole) for maintenance of
databases and roles. Must be able to connect to every database.

● Allow “pure” role(s) (i.e. with nologin password null and “no” everything else) and without any
privileges on any database as a vehicle for bundling privileges.
(Like pg_read_all_data and similar.)

(More detail in later slides.)

11

Global roles

© 2023 All Rights Reserved

● A local role must allow someone to connect to just one particular tenant database.

● Must have no “powerful” attributes.

● A newly-created tenant database must have is dedicated “manager” local role.

● Someone who connects to a tenant database, authorizing using as its “manager” local role,
must be able to create other local roles there (and only there).

● The local “manager” role must be able to configure “non-manager” local roles,
 in the current tenant database, and to limit their power appropriately.

● The only way to do this is to use security definer subprograms that come with the YBMT
configuration.

12

Local roles

© 2023 All Rights Reserved

YBMT’s essential concepts

13

© 2023 All Rights Reserved

● template1
Customized with no public schema and these dedicated YBMT schemas to hold common objects
(views, composite types,domains, subprograms, and the like).

○ extensions
○ mgr
○ dt_utils
○ client_safe

● yugabyte
The bootstrap database—i.e. the “home base” for the yugabyte and clstr$mgr global roles.
Contains some objects to support configuring a cluster for YBMT and for provisioning
tenant databases.

● tenant databases
Must have names like d0, d1,… d42,… Created using template1.
Notice that local roles have names like d0$mgr, d0$json_utilities,…d0$client.

14

Exactly one bootstrap database. N tenant databases (N ≥ 0)

© 2023 All Rights Reserved

● postgres (usually)
The “bootstrap superuser”. Unavoidable.
Altered with nologin password null (and no<every other attribute>).

● yugabyte (or a name that you like)
Created with superuser login password <your secret> (and no…)
The administrator authorizes as this to configure the cluster for YBMT
and thereafter only very rarely.
Might own a couple of security definer subprograms.

● clstr$mgr
Created with nosuperuser createrole createdb login password <your secret>.
The administrator authorizes as this to create/drop tenant databases.
Owns security definer subprograms (in template1) for role provisioning in tenant databases.

15

Only these specific global roles

© 2023 All Rights Reserved

● clstr$developer
Created with nosuperuser nocreaterole nocreatedb noinherit noreplication nobypassrls
 connection limit 0 nologin password null.
Has no privilege on any database.
Is the grantee of all of the native functionality that objects in pg_catalog implement.
Is granted to every local role except for the special “client” role.

NOTE: “all” is revoked on all pg_catalog objects from public.

16

Only these specific global roles — cont

select exists(
 select 1
 from pg_database
 where has_database_privilege('clstr$developer', datname, 'connect')
 or has_database_privilege('clstr$developer', datname, 'create')
 or has_database_privilege('clstr$developer', datname, 'temp')
)::text;

© 2023 All Rights Reserved

Simple demo

17

© 2023 All Rights Reserved

● Ensure that you have a sandbox PostgreSQL cluster with no valuable content.

● Ensure that its “bootstrap superuser” is called postgres.
(Else, you’ll have to do a ton of global search-and-replace to use what yours is called.)

● Ensure that there exists superuser called yugabyte and a database called yugabyte
created or altered with allow_connections true.

● You can ensure this starting state if the cluster is freshly-created by running this script:

ysql-case-studies/ybmt-clstr-mgmt/00-post-creation-bootstrap.sql

18

Before starting

© 2023 All Rights Reserved

● Download and unzip the contents of the ysql-case-studies repo.

● Rename the top of the tree to ysql-case-studies.

● Open a terminal window on the ysql-case-studies/ybmt-clstr-mgmt/minimal-demo directory.

● Look at the README.md.

● Look at the mini.sql script and step through it manually, copying-and-pasting into psql.

● Start mini.sql at the prompt and compare the spooled output for the two steps:

 re-config-clstr.txt and cr-tenant-db-and-install-app.txt

with the reference copies (names have -0 appended) that the repo brings.

19

Simple Demo

https://github.com/YugabyteDB-Samples/ysql-case-studies

© 2023 All Rights Reserved

● Find this in the mini.sql script:

20

Simple Demo — cont… role-name independence

● Replace “9” with “8” everywhere.

● Run the rest of the script by hand, emphasizing the teaching points.

\set lower_db_no 9
\set upper_db_no 9

\set db d9

\set db_name '\'':db'\''

\set mgr d9$mgr

\set cln d9$client

© 2023 All Rights Reserved

● Open clstr$mgr-PoC.sql and step through it manually.

● Notice the extra steps needed compared to doing the task as a superuser.

● Finally, use the mgr.drop(role) encapsulation to emphasize the value of the use of
security definer subprograms for role management within a tenant database.

21

Simple Demo — cont… clstr$mgr proof-of-concept

● Don’t forget to call out example-psqlrc.txt.

© 2023 All Rights Reserved

Some more detail

22

© 2023 All Rights Reserved

● You can’t execute create database or drop database from PL/pgSQL. The attempt causes:
“25001: CREATE DATABASE cannot be executed from a function” (and similar for drop).

● But we need both to drop tenant databases in a loop and to create them in a loop when the bounds
(for example d17 through d29) are provided at run-time.

● We use a common paradigm: use a table function to write a script, where each drop or create
statement is an explicit SQL statement. Spool the script to a file on /tmp using \o. Then execute that
script using \ir.

● Demo: manually \set lower_db_no 7 and \set upper_db_no 9

● Open 02-drop-and-re-create-tenant-databases.sql and step through it manually.

23

Mechanizing database create and drop using psql

© 2023 All Rights Reserved

● cr_role()

● drop_role()

● drop_all_regular_local_roles()

● set_role_search_path()

● set_role_password()

● set_role()

● revoke_all_from_public()

● grant_priv()

● prepend_to_current_search_path()

24

Security definer subprograms for role maintenance (see the README)

© 2023 All Rights Reserved 25

● Look for Implementing the principle of least privileges for “client” roles
in the README.md on the ybmt-clstr-mgmt directory.

● Look at 06-xfer-schema-grants-from-public-to-clstr-developer.sql.

● Then look at 10-cr-set-up-tenant-database.sql and 09-cr-tenant-role-mgmt-procs.

The “zero-privileged” client role

© 2023 All Rights Reserved 26

● Look for The join views for the pg_catalog tables and the table functions wrappers for these
in ysql-case-studies/ybmt-clstr-mgmt/README.md.

● Do this in any tenant database:

select name from mgr.catalog_views_and_tfs order by kind, rank;

Utilities—esp. user-friendly catalog views and table functions

© 2023 All Rights Reserved 27

select owner, kind, name from all_schema_objects where schema = 'extensions'
order by 1, 2, 3;

select owner, kind, name from all_schema_objects where schema = 'mgr'
order by 1, 2, 3;

select owner, kind, name from all_schema_objects where schema = 'dt_utils'
order by 1, 2, 3;

select owner, kind, name from all_schema_objects where schema = 'client_safe'
order by 1, 2, 3;

select count(*) from all_schema_objects
where schema = any(array['mgr', 'dt_utils', 'client_safe']);

Example: the all_schema_objects view

© 2023 All Rights Reserved 28

● analyzing-covid-data-with-aggregate-functions

● date-time-utilities

● hard-shell
● json-relational-equivalence

● recursive-cte

○ basics

■ procedural-implementation-of-recursive-cte-algorithm

■ fibonacci

○ employee-hierarchy

○ bacon-numbers

● triggers

○ trigger-firing-order

Case-studies

© 2023 All Rights Reserved 29

Thank You

Join us on Slack:
www.yugabyte.com/slack

Star us on GitHub:
github.com/yugabyte/yugabyte-db

The ysql-case-studies repo:
github.com/YugabyteDB-Samples/ysql-case-studies

29

http://www.yugabyte.com/slack
https://github.com/yugabyte/yugabyte-db
https://github.com/YugabyteDB-Samples/ysql-case-studies

