
The Part of PostgreSQL
I Hate the Most

Bohan Zhang
Cofounder, OtterTune

what are the drawbacks of MVCC and how to optimize it

Background01.
MVCC in PostgreSQL02.
Problems & Optimizations03.

Background01.

We Love Postgres !

It’s the fourth most popular database.

It’s actually a lot more popular than you might
expect.

In OtterTune, we have roughly the same number of
Postgres RDS and MySQL RDS under our management

Its popularity has been significantly increasing
over the last five years. This trend will continue.

It's open-source, feature-rich, extensible, and well-suited
for complex queries.

01.

source: DB-Engines Ranking

https://ottertune.com/

But certain aspects are not that great…

But as much as we love PostgreSQL at OtterTune, certain aspects
are not that great.

Instead of talking about how awesome everyone's favorite DBMS is, I want to discuss
the one major thing that sucks

The multi-version concurrency control (MVCC) implementation in
Postgres can cause severe performance issues for some workloads.

Our research at Carnegie Mellon University and experience optimizing PostgreSQL
databases in OtterTune have shown that their MVCC implementation is the worst
among other widely used DBMSs

01.

https://ottertune.com/

What is MVCC01.
When a query updates an existing row in a table, the DBMS
makes a copy of that row and applies the changes to this new
version instead of overwriting the original version.

Readers do not block writers, and writers do not block readers.

Increase the DBMS throughput
Reduce the query latency

No free lunch. It introduces additional overhead and issues.

Maintain multiple versions in storage
Find the latest version
Clean up "expired" versions

https://ottertune.com/

MVCC in PostgreSQL02.

Kung Fu Movies03.

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang

CREATE TABLE movies (
 id SERIAL PRIMARY KEY,
 name TEXT,
 year INT,
 director VARCHAR(128)
);
CREATE INDEX idx_name ON movies (name);
CREATE INDEX idx_director ON movies (director);

Secondary Index Secondary IndexPrimary Index

https://ottertune.com/

Multi-Version Storage03.

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang

◄ Old

◄ New 1 Shaolin and Wu Tang 1983 Chia-Hui Liu

UPDATE movies
 SET year = 1983
 WHERE name = 'Shaolin and Wu Tang'

Postgres makes a copy of that row and applies the changes to this new version.

All row versions in a table are stored in the same storage space.

Known as append-only version storage schema.

https://ottertune.com/

O2N version chain03.

SELECT * FROM movies
 WHERE name = 'Shaolin and Wu Tang'

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang

1 Shaolin and Wu Tang 1983 Chia-Hui Liu

next ver

-

-

-

Oldest-to-Newest
Version Chain

Each tuple version points to its new version, and the head is the oldest tuple version.
Known as Oldest-to-Newest (O2N) version chain
Postgres traverses the version chain to find the latest version.

https://ottertune.com/

UPDATE movies
 SET year = 1983
 WHERE name = 'Shaolin and Wu Tang'

Index03.

Index (movies.name)

Shaolin and Wu Tang (VER1)

Executioners from Shaolin

Five Deadly Venoms

...Shaolin and Wu Tang (VER2)

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang

next ver

-

-

Table Page #1

id name year director

1 Shaolin and Wu Tang 1983 Chia-Hui Liu

next ver

-

-

-

Table Page #2
PostgreSQL adds an entry to every table’s index for each physical version of a
row.

avoid having to traverse the entire version chain to get the latest version
introduce index maintenance overhead and write amplification

https://ottertune.com/

UPDATE movies
 SET year = 1983
 WHERE name = 'Shaolin and Wu Tang'

HOT optimization03.

Index (movies.name)

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang

1 Shaolin and Wu Tang 1983 Chia-Hui Liu

next ver

-

-

-

Shaolin and Wu Tang

Executioners from Shaolin

Five Deadly Venoms

...

Table Page #1

HOT (heap-only tuple) update:
 an update does not modify any columns referenced by table's indexes
 the new version is stored on the same data page as the old version

The index still points to the old version. Do not need to maintain indexes.
During normal operation, Postgres removes old versions to prune the version chain.

https://ottertune.com/

Autovacuum03.

PostgreSQL uses a vacuum procedure to clean up dead tuples from tables.
PostgreSQL automatically executes this vacuum procedure at regular intervals.

https://ottertune.com/

Problems &
Optimizations

03.

Version Copying03.

When a query updates a tuple, all of its
columns are copied into the new version.

Regardless of whether the query updates a
single column or all columns.
What if a table has 1000 columns?

This results in massive data duplication
and increased storage requirements.

id name year director

1 Shaolin and Wu Tang 1985 Chia-Hui Liu

2 Executioners from Shaolin 1977 Chia-Liang Liu

3 Five Deadly Venoms 1978 Cheh Chang

1 Shaolin and Wu Tang 1983 Chia-Hui Liu

next ver

-

-

-

https://github.com/orioledb

https://ottertune.com/
https://github.com/orioledb

Table Bloat03.

The DBMS has to load dead tuples into memory during
query execution.

It intermingles dead tuples with live tuples in pages
Page is the smallest unit when fetching data into memory

This causes the DBMS to incur more IOPS and consume
more memory than necessary during table scans.

Inaccurate optimizer statistics caused by dead tuples
can lead to poor query plans.

Data Page

a dead tuple

a live tuple

（2 live tuples, 7 dead tuples)

https://ottertune.com/

Table Bloat03.

Data Page 1 Data Page 2

Data Page 1 Data Page 2

VACUUM

a live tuple a dead tuple

Data Page 1 Data Page 2

A New Data Page

VACUUM FULL

(a). VACUUM (b). VACUUM FULL

VACUUM does not return unused space to OS
VACUUM FULL can return unused space, but it’s time-consuming and resource-intensive
OPTIMIZATION: Monitor the database bloat (pgstattuple) and reclaim unused space (pg_repack).

https://ottertune.com/
https://www.postgresql.org/docs/current/pgstattuple.html
https://reorg.github.io/pg_repack/

Index Maintenance03.

For non-HOT updates, PostgreSQL needs to modify ALL of
indexes in the table for each update.

What if a table has dozens of indexes?
Significant index maintenance overhead and write amplification

OtterTune customers' PostgreSQL databases shows that
roughly 46% of updates use the HOT optimization on average.

OPTIMIZATION: Drop duplicate and unused indexes in tables. pg_stat_all_indexes

https://ottertune.com/
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ALL-INDEXES-VIEW

Index Maintenance03.
Uber migrate from Postgres to MySQL

https://www.uber.com/blog/postgres-to-mysql-migration/

Side Comment:
Oldest-to-Newest (O2N)
version chain,

Not N2O version chain
erroneously stated in blog

https://ottertune.com/
https://www.uber.com/blog/postgres-to-mysql-migration/

Vacuum Management03.

Making sure that PostgreSQL's autovacuum is running as best as possible is
difficult due to its complexity.

Default settings for tuning the autovacuum are not ideal for all tables, particularly for large ones
autovacuum_vacuum_scale_factor default value is 20%
If a table has 100 million tuples, it needs 20 million dead tuples before the autovacuum kicks in

OPTIMIZATION:
Fine-tune the autovacuum settings at the table level,
particularly for large tables. pg_stat_all_tables

https://ottertune.com/
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ALL-TABLES-VIEW

Vacuum Management03.

More dead tuples
Stale statistics

Long-running
transactions

vacuums get blocked

more slow queries

Vicious
 Cycle

Autovacuum can be blocked by long-running transactions,
requiring humans to intervene manually.

OPTIMIZATION:
Identify and resolve long-running transactions promptly. pg_stat_activity

Identify and optimize prolonged vacuum processes. pg_stat_progress_vacuum

Case Study: ANALYZE after bulk insertions. The long query's execution time
went from 52 minutes to just 34 seconds after optimization.

https://ottertune.com/
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/10/progress-reporting.html
https://ottertune.com/blog/run-postgresql-analyze-to-fix-a-slowdow-in-db/

END
bohan@ottertune.com

Try OtterTune for free:
https://ottertune.com/try

https://ottertune.com/try

