
© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

All the roads that lead to
Amazon Aurora

Dustin Brown (he/him)
Sr SMB Database Specialist SA
AWS

John Russell (he/him)
Aurora Developer Advocate
AWS

© 2023, Amazon Web Services, Inc. or its affiliates.

Who are we?
• John Russell:

§ AWS Developer Advocate for Aurora. Gathering community feedback on
developer experience, doing outreach.

§ Former documentation writer for Aurora, MySQL, Oracle.

• Dustin Brown:
§ AWS Database Solutions Architect. Providing customers with prescriptive

guidance for database architecture and migration patterns to Aurora.
§ Former DBA and technical leader for various companies including the

airline, real estate, and genealogy industries.

2

© 2023, Amazon Web Services, Inc. or its affiliates.

What is Amazon Aurora?

• Amazon Aurora is a relational database. The PostgreSQL-
compatible edition is built on the community Postgres engine.
• It runs on AWS as a managed service.
• It features built-in physical replication, continuous backup, multi-AZ

high availability, geo-replication, and all sorts of scalability features.
• The architectural innovations are based on the principle,

“separation of compute and storage”.

3

© 2023, Amazon Web Services, Inc. or its affiliates.

What is this talk about?

• If you end up running Aurora PostgreSQL-compatible edition, that
means you’ve embarked on one, two, or all three of these journeys:
• Porting your schema & application from another database engine to the

open source PostgreSQL engine.
• Moving from on-premises deployment to a managed service on AWS.
• Optimizing your topology, HA strategy, and workload for the Aurora

architecture.
• This talk will give you guidance to point you in the right direction on

each journey. To save you time, effort, $$$, and surprises.

4

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Journey #1: Porting & Migration

5

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Automation
High Availability
Zero RPO
Monitoring
Maintenance/Patching
Up to 15 Read Instances

Industry Standard
Isolation & Security
Compliance Certification

Automated DBA Tasks
Backups
Push-button scaling
RDS: console, CLI, API
Full Postgres Compatibility
Version: 15,14,13,12,11

Shared Storage
Replica Millisecond: Latency
Global Database
Billing: Instance, Storage, IOPS
Fast Cloning
Up to 3x Greater throughput
Log Based Storage
Reclaimable Storage
Designed for:
• Concurrent Workloads

Replica Latency: Seconds
Replicas: Use of Wal Log
Sequential Query Workload
Billing: Instance, Storage
Standard Database Performance
Standard Storage
Cross-Region Read Replicas

Amazon RDSAmazon Aurora

AWS Relational Database Service

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

7
7

Aurora Pattern Aurora Anti-Pattern

OLTP OLAP/ETL

Heavy Read Traffic Light Read Traffic

Concurrent Workload Sequential

(Read Query) Cached Workloads Read From Disk

Short Transactions Long Running Transaction
Idle-In-Transactions

Heavy Joining

Combine Queries into Single
Transactions

> 100 GB data Set < 10 GB Data Set

> 16 Parallel Threads Low Concurrency

Decision Process to Pick Aurora for your Workload

SQL

SELECT c, c.name, o.orders_product
FROM customers c
JOIN orders o ON c.id = o.customer_id
WHERE c.country = 'USA’
LIMIT 100;

Optimization

• JOIN: customer_id foreign key index
• WHERE: filters on country
• LIMIT: less than 10 orders

© 2023, Amazon Web Services, Inc. or its affiliates.

Aurora throughput for PostgreSQL Sysbench

Amazon Aurora delivers >2x the absolute peak of PostgreSQL
and 5x at high client counts

0

20

40

60

80

100

120

140

256 512 768 1024 1280 1536 1792 2048 2305 2560

W
RI

TE
S

/
SE

CO
N

D
, T

H
O

U
SA

N
D

S

NUMBER OF CLIENTS

SYSBENCH WRITE-ONLY 30 GIB
PostgreSQL (Single AZ, No Backup) Amazon Aurora (Three AZs, Continuous Backup)

2.2x 5.3x
2.7x

© 2023, Amazon Web Services, Inc. or its affiliates.

Porting PostgreSQL Applications to Aurora

• Aurora supports the full SQL dialect of the corresponding
community PostgreSQL version, for versions 11-15.
• Each Aurora version has a set of supported extensions and foreign

data wrappers.
• Only trusted languages allowed.
• Previously: AWS was the gatekeeper.
• Now: the Trusted Language Extensions open source project lets you write

your own extensions or use ones from the community.
• Read-write splitting is good for read-intensive applications – via

application code, ORM, or proxy layer.
9

© 2023, Amazon Web Services, Inc. or its affiliates.

Trusted Language Extensions (TLE)

• Currently, there are ~85 PostgreSQL extensions approved for use
with Aurora.
• Want to write your own and run it with Aurora? Use TLE.
• TLE: open-source SDK for writing extensions in trusted languages.
• Write in PLPgSQL, SQL, Javascript, Perl, Tcl. The community is

working on Rust support.
• Buggy extensions can’t harm the server or other connections.
• You can define the upgrade path between extension versions.
• You can create a TLE wrapper for an extension from someone else.

10

© 2023, Amazon Web Services, Inc. or its affiliates.

Migrating schema & data into Aurora

• From on-premises PostgreSQL or RDS PostgreSQL: native tools
• Native backup & restore: pg_dump/pg_restore.
• Logical replication with Aurora as the destination.

• AWS purpose-built migration tools:
• For most engines, you can use the Schema Conversion Tool (SCT) to convert

tables to a PostgreSQL-compatible schema.
• Data Migration Service (DMS) can transfer the data from one engine to another.

DMS can also perform CDC to enable up-to-date syncing until switchover.

11

© 2023, Amazon Web Services, Inc. or its affiliates.

12

Migrate and Modernize Oracle and SQL Server Workloads
and their Applications to Aurora

What’s the effort?

© 2023, Amazon Web Services, Inc. or its affiliates.

Porting T-SQL Applications to Aurora + Babelfish

• To avoid rewriting a SQL Server application written in T-SQL,
Babelfish can help:
• You keep the majority of the T-SQL schema and SQL statements.
• Aurora does the DB processing behind the scenes.

• The Babelfish Compass tool analyzes the T-SQL source, identifies
supported/unsupported things, estimates the effort to rewrite.
• You use Aurora and Postgres features for administration tasks such

as backups and high availability.

13

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Journey #2: On-Premises
to Managed Service

15

© 2023, Amazon Web Services, Inc. or its affiliates.

Getting Started with Aurora as a Managed Service

• You might have to revisit long-held assumptions. There’s a learning curve.

• No login to the host that runs the DB server.
• You don’t edit the configuration file directly.
• You don’t run any co-located tools.

• Management is through the AWS console GUI. For automation or devops,
the AWS CLI has commands that do all the same things. Both are built on a
management API that has many language SDKs (e.g. boto3 for Python).

16

© 2023, Amazon Web Services, Inc. or its affiliates.

Considerations for DBAs: “do less”

• Storage capacity for table data isn’t a day-to-day concern.

• Consider Aurora Serverless v2 to auto-adjust instance capacity.

• Backups happen continuously, in the background.
• Now responsibilities are how/when to restore, high-level DR strategy.

17

© 2023, Amazon Web Services, Inc. or its affiliates.

Considerations for DBAs: “do things differently”

• Configuration Management via parameter groups.

• Database capacity and health involves multiple DB instances.
• Aurora reader instances instead of, or alongside, logical replication.
• Aurora global database: identical data in multiple AWS Regions.

• Learning other AWS services that integrate with Aurora.

18

© 2023, Amazon Web Services, Inc. or its affiliates.

Considerations for Developers

• Super-easy to spin up a new system preloaded with data.

• Super-easy to change capacity to match your current needs.
• Manually by changing instance class, or automatically via Serverless v2.

• Connection considerations are different:
• Network setup to be able to connect securely.
• Read-write splitting for read-intensive applications. (2 endpoints.)
• Less hardcoding for connection details.

19

© 2023, Amazon Web Services, Inc. or its affiliates.

Terminology used in Aurora

Be aware of nuances when you see terms in an Aurora context:
• “cluster” – storage volume + variable number of DB instances.

• “replica/replication” – Aurora refers to “writer instance” and “reader instance”
to distinguish Aurora physical replication from Postgres logical replication.

• “backup” – it’s something you have, more than something you do.

• “Serverless” – servers still exist, they just grow or shrink capacity depending
on load. Aurora Serverless v2 is newer & better for production systems.

20

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Journey #3a: Aurora
scalability and HA features

22

© 2023, Amazon Web Services, Inc. or its affiliates.

Leveraging and Optimizing for Aurora

• What are the big levers you can pull to balance efficiency and HA?

• Take advantage of Aurora physical replication.
§ And Aurora global database for cross-Region replication.

• Find the right capacity to meet your needs with efficient
price/performance:
• Choose instance classes wisely.
• Aurora Serverless v2: useful in many scalability scenarios.

23

© 2023, Amazon Web Services, Inc. or its affiliates.

Amazon Aurora cluster topology

Up to 16 DB instances/nodes in a
regional cluster, spanning
multiple AZs

One is always the writer/primary.
Failover changes which instance is
the writer.

Storage volume shared with
readers. Readers open volume in
read-only mode (PostgreSQL:
transaction_read_only = on).

AZ 1 AZ 2 AZ 3

SHARED CLUSTER STORAGE VOLUME

Writer

Transactions

Caching

SQL

Reader

Transactions

Caching

SQL

Reader

Transactions

Caching

SQL

DB Cluster

© 2023, Amazon Web Services, Inc. or its affiliates.

Separation of compute and storage

• An Aurora cluster is a whole lot of storage (up to 128 TB), accessed
by a variable number of DB instances.

• Your data is safe regardless of how many DB instances are in the
cluster.

• Multi-AZ configurations are the foundation of Aurora HA.
§ Have at least one standby server for production deployments.
§ Aurora makes multi-AZ simple. One checkbox or menu choice.

26

© 2023, Amazon Web Services, Inc. or its affiliates.

Replication in Aurora: Let's Get Physical

• Aurora maintains 6 copies of all the data in a cluster, across 3 AZs.

• This physical replication is offloaded to the servers that run Aurora
storage. That makes the writes low-latency and low-overhead.

• All the DB instances see exactly the same data and schema.
• The readers don’t copy data or replay statements. “Replica lag” means how

long before a reader instance evicts stale data from its buffer cache.

27

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Journey #3b:
PostgreSQL tuning for Aurora

32

© 2023, Amazon Web Services, Inc. or its affiliates.

Performance for Aurora Applications

Aurora uses the same SQL dialect as the community PostgreSQL engine.
• CREATE INDEX / EXPLAIN the same as always.

Aurora has its own storage layer. The changes to physical reads, network, and
I/O mean the causes of bottlenecks are different.

§ For low-level tuning, you delve into wait events.
§ For detailed yet still user-friendly performance work, you use CloudWatch,

Performance Insights, and DevOps Guru for alarms, visualizations, and
recommendations.

§ Enhanced Monitoring shows OS-level performance info.

33

© 2023, Amazon Web Services, Inc. or its affiliates.

How Aurora optimizes I/O

Aurora

UPDATE t SET y = 6;

Block in
Memory

t-v1
t-v2
t-v3

Aurora
Storage

t-v1
t-v2
t-v3

no
checkpoint

=
no FPW

Block in
Memory

PostgreSQL

t-v1
t-v2
t-v3

checkpoint

datafile

t-v1
t-v2

Full Block

t-v3

WAL

archive

4K

4K

UPDATE t SET y = 6;

Amazon S3

© 2023, Amazon Web Services, Inc. or its affiliates.

Performance Tuning – Guidelines for Parameters

• Start with default values for parameters to define a baseline.

• Parameters are usually tuned by default for the instance class you
choose

• Understand the impact of Aurora parameter changes.

• Parameters can be granular:

• Some parameters can be set in a session or for a user e.g. work_mem,
maintenance_work_mem.

• Some parameters can be tweaked for tables e.g. vacuum and autovacuum
related parameters.

© 2023, Amazon Web Services, Inc. or its affiliates.

Parameter Group Best Practices

• Create a custom parameter group for any production system

• Avoid attaching multiple cluster/instances to 1 parameter group

• Some parameters can only be changed at cluster level and some
only at instance level

• Use same parameter group for writer and the readers you prefer for
failover

• Never customize a parameter in both cluster parameter group &
instance parameter group

© 2023, Amazon Web Services, Inc. or its affiliates.

Tuning at the Instance Level – Crucial Metrics

• Right-size your instance so that working set fits in-memory.

• Small ReadIOPS & high BuffercacheHitRatio

• Monitor key performance and utilization indicators.

• Query latency, CPUUtilization, FreeableMemory, DBConnections,
ReadThroughput, WriteThroughput, DBLoad

© 2023, Amazon Web Services, Inc. or its affiliates.

Don’t lock yourself up!
PostgreSQL Vacuum
• Don’t kill or disable auto-vacuum.

• Avoid VACUUM FULL

Aurora uses the same SQL dialect as the community PostgreSQL engine.
• CREATE INDEX / EXPLAIN the same as always.

• Avoid REINDEX

• CREATE INDEX CONCURRENTLY

• Version 12 supports REINDEX CONCURRENTLY.

• DROP old index.

• RENAME if needed.

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Journey #3c: Monitoring

39

© 2023, Amazon Web Services, Inc. or its affiliates.

Aurora Purpose Built Monitoring Tools

• CloudWatch
• Enhanced Monitoring
• Performance Insights

• Database Load
• Counters
• CPU Bottleneck
• Wait Bottleneck

40

© 2023, Amazon Web Services, Inc. or its affiliates.

CloudWatch Metrics
CloudWatch also gathers metrics on the host underlying the RDS database. You
can view these metrics in the RDS console under the monitoring tab.

CloudWatch Metrics:
• CPU Utilization
• DB Connections
• Free Storage
• Free Memory
• Billable Write IPOS
• Billable Read IOPS

• Filter last hour to 2 weeks
• Compare RDS instances

© 2023, Amazon Web Services, Inc. or its affiliates.

Enhanced Monitoring
Gathers finer grained OS metrics from an agent installed on the RDS host.
• By default metrics are stored for 30 days. Governed by RDSOSMetrics log group in CloudWatch
• Incurs additional CloudWatch costs based on granularity (from 1 to 60 seconds).

© 2023, Amazon Web Services, Inc. or its affiliates.

Enhanced Monitoring – OS Process List
Enhanced Monitoring also includes the Process list, reachable from the monitoring
dropdown. Sort the list by metric (e.g. CPU), filter for a particular user or database.

Process Groups
• RDS Child processes
• RDS Processes
• OS Processes

Items Listed
VIRT – Virtual size of process
RES – Physical memory used
CPU% - Total CPU bandwidth
MEM – Total memory used

© 2023, Amazon Web Services, Inc. or its affiliates.

Performance Insights

• Dashboard
• DB load

• Adjustable timeframe

• Filterable by attribute (SQL, User, Host, Wait)

• SQL causing load

• Phased Amazon RDS delivery
• Amazon Aurora, Amazon RDS for MySQL, PostgreSQL, Oracle, SQL Server, MariaDB

• Guided discovery of performance problems
• For both beginners & experts
• Core metric “database load”

© 2023, Amazon Web Services, Inc. or its affiliates.

• All engines have a connections list showing

• Active, Idle

• We sample every second

• For each active session, collect

• SQL

• State: CPU, I/O, lock, commit log wait, etc

• Host

• User

• Expose as “average active sessions” (AAS)

What is “database load”?

© 2023, Amazon Web Services, Inc. or its affiliates.

Monitoring and Tuning Recap
• 7 Takeaways for PostgreSQL tuning with Aurora:

• Tuning #1: Ensure that there is sufficient RAM

• Tuning #3: Check index availability and usage

• Tuning #4: Maintenance (Vacuuming)

• Tuning #5: Limit temp table usage

• Tuning #6: Scalability through join decomposition

• Tuning #7: Recommended PostgreSQL settings for Aurora

• Tuning #8: Utilize Performance Insights and Enhanced Monitoring

46

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Managing costs for Aurora

47

© 2023, Amazon Web Services, Inc. or its affiliates.

Managing Costs with Aurora

• Aurora charges fall into 3 buckets:

• Instances: Under your control. You can influence via # of instances, instance
class, stop/start.

• Storage: Predictable. You can influence by cleaning up (e.g. dropping
unused indexes, vacuuming) and archiving (e.g. unneeded or too-old data).

• I/O: Varies based on usage. You can influence by tuning queries, sizing
instances for big enough buffer cache, avoiding wasteful copying.

48

© 2023, Amazon Web Services, Inc. or its affiliates. 49

Aurora Best Practices – Performance & Cost Optimization

Best Practice Result
Allocate enough RAM Goal is for working set to reside completely in memory.

Monitor workload
• VolumeReadIOPS
• BufferCacheHitRatio

Aurora bills at the storage I/O layer. Monitor query activity at the
disk layer.

Cached workloads Sporadic workloads on large databases.

Warm the buffer cache before use Cold cache could give false readings when testing load.

Keep transactions short Reduce replication lag and allow data to stay in cache longer.

Set (TTL) value of less than 30
seconds

Reduce connection failures.

Test DB failovers Verify that writer and readers are sized correctly, and your
application is resilient to instances switching roles.

© 2023, Amazon Web Services, Inc. or its affiliates.

Scenario: “signing off for the night”

Don’t need full DB capacity running 24x7? Here are some ways to save on
instance charges during idle times:

• Stop the cluster. No instance charges while it’s in “stopped” state.

§ For long-term stoppage: save snapshot, delete cluster, restore snapshot later.

• Downsize the instance class for any instances in the cluster.
• Reduce the number of instances in the cluster, to 1 or even 0.

• Adjust capacity range in Serverless v2. (Set a low number for minimum ACUs.)

• Turn on auto-pause in Serverless v1.

50

© 2023, Amazon Web Services, Inc. or its affiliates.

Scenario: “choosing capacity for database instance”

• The Aurora pricing page, and the AWS pricing API, tell you hourly
charges for instance classes: by engine, version, and AWS Region.
• Pick whatever capacity you need during active periods, use one of

the cost-saving techniques (from previous slide) during idle times.
• Size instances up temporarily during intensive workloads.
• Or, let Serverless v2 adjust capacity range based on load.

§ You pick a sensible floor & ceiling for the capacity range.
• Interesting classes: T (for dev/test only), X2 (extra memory), R6g

(price/performance), R6i.32xlarge (biggest available today).

51

https://aws.amazon.com/rds/aurora/pricing/

© 2023, Amazon Web Services, Inc. or its affiliates.

Scenario: “a dev sets up a new DB server”

• Clone an existing cluster.
§ Super-fast, saves on I/O during setup, saves on storage that’s identical.
§ Best for environments that aren’t long-lived and data doesn’t diverge greatly.

• Restore a snapshot.
§ Faster and cheaper than reloading the data.
§ You can save a manual snapshot forever, or restore based on any time within

the retention interval.
• The cloned or restored clusters can use different instance classes, cluster

topologies, be upgraded to a higher version.
• Do you need a new environment if there’s ~128 TB free in your old one?

52

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Demo – reducing costs for
idle dev/test instances

53

© 2023, Amazon Web Services, Inc. or its affiliates.

Where in the world am I using Aurora?

What are all the places I could be using Aurora?

54

aws ec2 describe-regions --region us-east-1 --query 'Regions[*].[RegionName]' --output
text | sort

af-south-1
ap-east-1
ap-northeast-1
ap-northeast-2
...
us-east-1
us-east-2
us-west-1
us-west-2

© 2023, Amazon Web Services, Inc. or its affiliates.

Where in the world am I using Aurora?

What are all the places I actually am using Aurora? Run in a loop...

55

aws rds describe-db-instances --region $region --query '*[].[DBInstanceIdentifier]' --
output text

AWS Region ap-southeast-4: 1 DB instance(s)
AWS Region ca-central-1: 1 DB instance(s)
AWS Region us-east-1: 23 DB instance(s)
AWS Region us-west-1: 1 DB instance(s)

© 2023, Amazon Web Services, Inc. or its affiliates.

Where do I have Aurora instances that are running?

Because I care about instances with status “available”, not “stopped”.

56

aws rds describe-db-instances --region "$region" --query
'DBInstances[*].{DBInstanceIdentifier:DBInstanceIdentifier,DBInstanceClass:DBInstanceClas
s,Engine:Engine,EngineVersion:EngineVersion,DBClusterIdentifier:DBClusterIdentifier,DBIns
tanceStatus:DBInstanceStatus}|[?DBInstanceStatus == `available`]|[?Engine == `aurora-
postgresql`]|[].[DBInstanceIdentifier,DBInstanceClass,Engine,EngineVersion,DBClusterIdent
ifier,DBInstanceStatus]' --output table

© 2023, Amazon Web Services, Inc. or its affiliates.

What’s the hourly charge for each instance class?

These numbers vary by AWS Region, are subject to change, and don’t reflect
discounts from reserved instances or other pricing arrangements. Think of this
as a worst-case scenario. Always consult the latest pricing information for your
AWS Region!

57

18.56 - db.r6i.32xlarge
13.92 - db.r6i.24xlarge
13.92 - db.r5.24xlarge
...
0.146 - db.t4g.large
0.082 - db.t3.medium
0.073 - db.t4g.mediu

aws pricing get-products --service-code AmazonRDS <too many more parameters to
fit here>

https://aws.amazon.com/rds/aurora/pricing/

© 2023, Amazon Web Services, Inc. or its affiliates.

Compare and contrast instance classes

For Aurora, the T classes are recommended only for dev/test:

58

0.164 - db.t3.large
0.146 - db.t4g.large
0.082 - db.t3.medium
0.073 - db.t4g.medium

The sizes and prices within each family tend to increase consistently:
8.306 - db.r6g.16xlarge
6.229 - db.r6g.12xlarge
4.153 - db.r6g.8xlarge
2.076 - db.r6g.4xlarge
1.038 - db.r6g.2xlarge
0.519 - db.r6g.xlarge
0.26 - db.r6g.large

© 2023, Amazon Web Services, Inc. or its affiliates.

Compare and contrast instance classes

Within a given size, the latest generation tends to be a better deal than older
ones. (More horsepower at same price.) Also x2g offers 2x the RAM, r6g offers
good price/performance:

59

6.032 - db.x2g.8xlarge
4.64 - db.r6i.8xlarge
4.64 - db.r5.8xlarge
4.64 - db.r4.8xlarge
4.153 - db.r6g.8xlarge
3.016 - db.x2g.4xlarge

© 2023, Amazon Web Services, Inc. or its affiliates.

What if all those steps were combined?

60

--- instance-2023-03-13-8569 ---
Hourly instance price for Aurora PostgreSQL, db.r5.4xlarge, us-east-1 in US
dollars: $2.32
If you leave an instance like that running until tomorrow 9 AM (starting now),
that will cost roughly: $___
--- my-second-babelfish-instance ---
Hourly instance price for Aurora PostgreSQL, db.t4g.medium, us-east-1 in US
dollars: $0.073
If you leave an instance like that running until tomorrow 9 AM (starting now),
that will cost roughly: $___

=== Summary of overnight charges ===
Your total overnight charges for idle DB instances in the us-east-1 AWS Region,
in US dollars, could be roughly: $___

Imagine a script that went through this process and calculated a total. Would this be useful?

© 2023, Amazon Web Services, Inc. or its affiliates.

Resources
• Trusted Language Extensions (TLE) project: https://github.com/aws/pg_tle

• Babelfish project: https://babelfishpg.org/
• Supported PostgreSQL extensions:

https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html
• AWS instance classes for Aurora:

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html

• Aurora pricing page: https://aws.amazon.com/rds/aurora/pricing/
• Aurora product page: https://aws.amazon.com/rds/aurora/
• Dustin’s blog on SQL Server to Aurora migration: https://aws.amazon.com/blogs/database/migrate-sql-

server-to-amazon-aurora-postgresql-using-best-practices-and-lessons-learned-from-the-field/
• John’s video on SQL Server to Aurora migration using Babelfish:

https://www.youtube.com/watch?v=f9YC5NyNzAE

61

https://github.com/aws/pg_tle
https://babelfishpg.org/
https://docs.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-extensions.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.DBInstanceClass.html
https://aws.amazon.com/rds/aurora/pricing/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/blogs/database/migrate-sql-server-to-amazon-aurora-postgresql-using-best-practices-and-lessons-learned-from-the-field/
https://aws.amazon.com/blogs/database/migrate-sql-server-to-amazon-aurora-postgresql-using-best-practices-and-lessons-learned-from-the-field/
https://www.youtube.com/watch?v=f9YC5NyNzAE

© 2023, Amazon Web Services, Inc. or its affiliates. © 2023, Amazon Web Services, Inc. or its affiliates.

Thank you!
John Russell
johrss@amazon.com
@max_webster

Dustin Brown
dusbr@amazon.com

mailto:johrss@amazon.com
mailto:johrss@amazon.com

