
Achieving High Availability (HA) in PostgreSQL
Strategies, Tools, and Best Practices

Principal Engineer
Ibrar Ahmed

High Availability
Operational Continuity: High availability in PostgreSQL guarantees that the database remains operational and

accessible, minimizing downtime even during system failures.

Redundancy and Automated Failover: Implement redundant system configurations alongside automated failover

processes to ensure uninterrupted service and quick recovery from failures.

Data Integrity with Synchronous Replication: Utilize synchronous replication to maintain data integrity, ensuring that

all data on the primary server is exactly mirrored on the standby server at all times, thus preventing data loss.

Seamless Failover Mechanisms: Develop and maintain seamless failover mechanisms that enable quick and efficient

transition to standby servers without service disruption, ensuring continuous database availability.

Monitoring and Regular Testing: Regularly monitor the health of the database systems and conduct failover drills to

ensure the high availability setup performs effectively when actual failures occur.

High Availability in PostgreSQL

• High availability in PostgreSQL ensures the database is operational

and accessible without significant downtime.

• Replication: Streaming replication is used to create standby servers

that are continuously updated with data from the primary server.

• Failover: Automatic failover process to switch to a standby server in

case the primary server fails.

• Load Balancing: Distribution of queries across multiple servers to

improve performance and distribute the workload.

• Connection Pooling: Management of database connections to

optimize resource usage and improve performance.

• Monitoring and Management: Continuous monitoring of database

servers to detect and respond to issues promptly, often using tools

like pgBouncer and pgpool.

• Backup and Recovery: Regular backups and robust recovery plans

to protect against data loss and ensure quick service restoration.

• Clustering: Grouping multiple servers to work as a single system,

providing redundancy and improving availability.

US West-2

US West-2

US West-2

pgbackrestpgbackrest

pgbackrest

PostgreSQL supports several replication methods, including logical and streaming each catering to
different requirements and use cases.

• Streaming Replication: A popular method for real-time replication, streaming replication involves
a primary server sending data changes to one or more standby servers. This method is helpful for
high availability and load balancing.

• Synchronous vs. Asynchronous Replication: In synchronous replication, transactions must be
confirmed by both the primary and standby servers before being committed, ensuring data
consistency but potentially affecting performance. Asynchronous replication, while faster, does not
guarantee immediate consistency across servers.

• Logical Replication: Allows selective data replication at the table level, allowing the flexibility to
replicate only specific tables or rows. It's beneficial for upgrading systems with minimal downtime
and integrating data across different PostgreSQL versions.

Replication

Physical Replication

• Physical replication in PostgreSQL is a method for
copying and synchronizing data from a primary server to
standby servers in real-time.

• Real-time transfer of WAL records from a primary to
standby servers to ensure data consistency and
up-to-date replicas.

• Standby servers can run in hot standby mode, allowing
them to handle read-only queries while replicating
changes.

• Configurable as either synchronous, for strict data
integrity, or asynchronous, for improved write
performance.

• Facilitates automatic failover by promoting a standby to
primary in case of primary server failure.

5

Logical Replication

• Logical replication is method of copying data
objects and changes based on replication identity.

• Provides fine grained control over data replication
and security.

• Publisher / Subscriber model - one or more
subscriber subscribe to one or more publisher.

• Copy data in format that can be interpreted by other
systems using logical decoding plugins.

• Publication is set of changes generated from a table
or group of tables.

• Subscription is the downstream end of logical
replication.

6

7

Client Primary
Secondary Secondary

Write Write on
Primary

Write
Complete

Write on
Replica 1

Write on
Replica 2

ACK

ACK

Asynchronous Replication

8

Client Primary Secondary Secondary

Write Write on
Primary

Write
Complete

Write on
Replica 1

Write on
Replica 2

ACK

ACK

Quorum
Commit
(PG-10)

Synchronous Replication

Deployment Models (Active-Standby / Active-Active)

• One primary and one or more stand-by servers

• Write traffic on primary and read traffic load

balance on read replica using external tools

• Synchronous / Asynchronous / Quorum Commit

choices

• Load Balancing / High Availability

• Automatic Failover using external tools

• Low chances of data loss

Active - Standby

Logical Replication• One or more primary/active servers replicating

between each other.

• Not part of Core PostgreSQL, implemented using 3rd

party tools and extension

• Requires Conflict detection and resolutions

• Use cases are High Availability, data residency, data

latency and near zero downtime upgrades

Active-Active

9

Multimaster Replication

10

● Simultaneous Data Writing: Multi-master replication allows
multiple database instances to handle write operations
simultaneously, enhancing the database's write availability and
scalability.

● Conflict Resolution: Incorporates mechanisms to handle conflicts
that arise when the same data is modified at different nodes,
ensuring data consistency across all nodes.

● Load Distribution: Distributes both read and write loads across
several nodes, effectively balancing the load and improving overall
system performance.

● Improved Fault Tolerance: Increases the database system's fault
tolerance by allowing the system to remain operational even if one
of the master nodes fails, thereby reducing potential downtime.

● Real-Time Data Synchronization: Ensures real-time or
near-real-time synchronization between nodes, keeping the
databases up-to-date and consistent with each other.

● Geographical Distribution: Supports geographical distribution of
database nodes, which can reduce latency for globally distributed
applications by allowing users to interact with the nearest
database node.

Read
-W

riteRead-Write

Connection Pooling
Reduced Connection Overhead: Connection pooling in
PostgreSQL minimizes the time and resources required to
establish database connections by reusing existing
connections.

Enhanced Scalability: By managing a pool of active
connections, PostgreSQL can handle more simultaneous
client requests, improving scalability.

Improved Performance: Connection pooling leads to faster
database access and response times, enhancing overall
application performance.

Configurable Pooling Solutions: PostgreSQL supports
external connection pooling solutions like PgBouncer,pgCat
and Pgpool-II, which offer configurable settings for
optimized performance.

Replica PostgreSQLPrimary PostgreSQL

• pgPool-II
• pgCat
• pgBouncer

Tools for High Availability in PostgreSQL
● Patroni: Automates PostgreSQL cluster management, handling failover and ensuring seamless transitions during node failures to maintain high availability.

● ETCD: A key component of Patroni, ETCD serves as a highly reliable distributed key-value store that manages the state of the cluster, facilitating consensus and

leader election.

● pgBouncer: A lightweight connection pooler for PostgreSQL that reduces connection overhead and improves resource utilization by managing client

connections.

● Pgpool-II: Enhances PostgreSQL performance by providing connection pooling, load balancing, and replication services, optimizing read operations and system

resilience in high traffic environments.

Failover

Promote the Standby to Primary

● Use the pg_ctl promote command or create a trigger file if
configured to use one.

pg_ctl promote -D /usr/local/pgsql/data

● This action will convert the standby into a primary, and it will
begin accepting write operations.

Reconfigure Application Connections

● Redirect all application connections from the old primary to
the new primary (the promoted standby).

● Ensure client connection strings or load balancers are
updated to point to the new primary server

Primary Server

Replica - 2Replica - 1

Physical Replication

Ph
ys

ica
l R

ep
lic

at
io

n

192.168.1.1

192.168.1.2
192.168.1.3

Ensuring Minimal Service Disruption
● High Availability Configuration: Set up PostgreSQL with high availability clusters using tools like Patroni, which

automate failover and recovery processes to ensure minimal service disruption.

● Regular Backup and Restore Tests: Implement routine backups using tools like pgBackRest or Barman, and

regularly test restore processes to ensure data can be recovered quickly and accurately after an outage.

● Connection Pooling: Utilize connection pooling mechanisms such as pgBouncer or Pgpool-II to manage client

connections efficiently, ensuring the database can handle high loads and maintain performance during peak

times.

● Load Balancing: Deploy load balancers like HAProxy or utilize Pgpool-II to distribute database requests evenly

across servers, reducing the risk of overloading any single server and maintaining service availability.

● Real-Time Monitoring and Alerts: Implement comprehensive monitoring with tools like Prometheus and Grafana

to track database performance and system health, enabling quick response to issues before they cause significant

service disruptions.

Monitoring
● Comprehensive Logging: PostgreSQL can be monitored through its detailed logging system,

enhanced by tools like pgBadger, which analyzes logs and generates performance reports.

● Built-in Statistics Collector: Use PostgreSQL's built-in statistics collector for insights, with tools

like pg_stat_statements and pg_stat_activity to analyze query performance and session activity.

● Performance Dashboard Tools: pgAdmin provides a comprehensive graphical interface for

PostgreSQL management and monitoring, while PHPPgAdmin offers additional web-based

monitoring capabilities.

● External Monitoring Solutions: Integrating Prometheus for metric collection and Grafana for

visual analytics allows for extensive monitoring and real-time performance tracking of

PostgreSQL environments.

Backup and Restore
• pg_dump and pg_dumpall: These are the primary tools for backing up PostgreSQL. pg_dump is used for backing up

individual databases, while pg_dumpall is useful for backing up all databases on a server, including global objects like

roles and tablespaces.

• Barman: This is a popular third-party management tool for disaster recovery of PostgreSQL databases. Barman allows

remote backups, providing point-in-time recovery and integration with streaming replication.

• pgBackRest: Another robust tool that offers features like incremental backups, parallel processing for faster backup and

restore times, and on-the-fly compression and encryption to enhance security and reduce storage requirements.

• WAL-E: A tool designed for managing continuous archiving of PostgreSQL WAL files. WAL-E supports storing backups

in cloud storage services like AWS S3, Google Cloud Storage, and Azure Blob Storage, facilitating disaster recovery.

• Continuous Archiving and Point-in-Time Recovery (PITR): PostgreSQL supports continuous archiving of transaction

logs (WAL files), which allows for precise point-in-time recovery. Tools like pg_basebackup and configurations in the

postgresql.conf can be utilized to set up and manage WAL shipping for robust data protection and recovery.

Backup and Restore
• Incremental Backups: pgBackRest supports incremental backups,

which only capture changes made since the last backup,
significantly reducing the amount of data transferred and storage
space required.

• Parallel Processing: It utilizes parallel processing to expedite the
backup and restore processes, making it highly efficient for
handling large databases by using multiple CPU cores to manage
the workload.

• Point-in-Time Recovery (PITR): pgBackRest allows for
point-in-time recovery, enabling administrators to restore a
database to a specific moment, which is crucial for minimizing
data loss in case of an error or issue occurring post the last full
backup.

• Compression: It provides on-the-fly compression to save storage
space and supports encryption of backup data, enhancing the
security of data stored in backup files.

• Remote Backup Capabilities: pgBackRest can perform backups
from a remote server, reducing the load on the primary database
server and allowing more flexible and robust backup architecture
configurations.

pgbackrest

Local Storage

High Availability in PostgreSQL

US West-2

US East-2

US East-1

pgbackrest

pgbackrest

pgbackrest

Logical Replication

Logical Replication

Lo
gi

ca
l R

ep
lic

at
io

n

Patroni

Patroni
Patroni

Questions

Ibrar Ahmed

Code is like clay; in the hands of a skilled
craftsman, it can be molded into something that
stands the test of time. Remember, the art is
not in writing code, but in crafting solutions that
endure. Let's build not just for today, but for the
future.

