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Agenda

■ Introduction to CloudNativePG (CNPG)
■ Installation of the kubectl plugin for CNPG
■ First deployment of a CNPG cluster
■ PostgreSQL configuration, databases and roles 

management
■ PostgreSQL Extensions
■ Database import
■ Incident simulation (failover showcase)
■ Log reading
■ Upgrade of the Operator and the PostgreSQL 

version (minor, and major)
■ Setup and execution of the first backup
■ Restore from a backup
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To speed up the process and let you follow the workshop seamlessly:

▪ LINKS.md

● contains the list of links mentioned during the course

▪ COMMANDS.md

● contains the list of commands in the order of appearance in this course

Useful Contents
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cnpg-playground Requirements:

▪ Docker
▪ Kind
▪ kubectl
▪ CNPG Plugin
▪ git

Then:

▪ Set limits with sysctl (linux)
▪ Exec setup.sh script
▪ Export of the Kube config
▪ Set EU context
▪ Creare gli alias
▪ Test the connection

https://github.com/cloudnative-pg/cnpg-playground/

Setup environment
$ # For Linux users
$ sudo sysctl \
  fs.inotify.max_user_watches=524288 \
  fs.inotify.max_user_instances=512

$ cd cnpg-playground

$ # Edit the ./k8s/kind-cluster.yaml
$ # Add the following configuration
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
name: cnpg
featureGates:
  ImageVolume: true

$ ./scripts/setup.sh eu

$ export 
KUBECONFIG=<path-to>/cnpg-playground/k8s/kube-config.yaml

$ kubectl config use-context kind-k8s-eu

$ . <path-to>/bash_aliases.sh

$ kubectl get pods -A
$ keu get pods -A

https://github.com/cloudnative-pg/cnpg-playground/
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CloudNativePG

■ A CNCF Sandbox Operator
■ Manages the whole lifecycle of a 

PostgreSQL cluster
■ Declarative Configuration
■ Runs on many Kubernetes distribution:

● Vanilla
● OpenShift
● Cloud Service Providers K8S env
● kind
● …

https://cloudnative-pg.io/ 
https://github.com/cloudnative-pg/cloudnative-pg

https://cloudnative-pg.io/
https://github.com/cloudnative-pg/cloudnative-pg
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■ Manages Operands
● PostgreSQL container images

■ Extends Kubernetes with:
● Controllers

■ Takes advantage of the Kubernetes API 
to reconcile the PostgreSQL cluster state

● Custom Resource Definitions
■ Backups
■ Clusters
■ ImageCatalogs
■ Poolers
■ Databases
■ …

https://cloudnative-pg.io/docs/devel/

How does it work?
   Minimum required* YAML definition:

 * Convention over configuration paradigm:
    all the other parameters are set by default.

https://cloudnative-pg.io/docs/devel/
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CloudNativePG - Main Features
https://cloudnative-pg.io/docs/devel/#main-features

■ High Availability and Self-Healing

■ Support for local PVCs

■ Managed services for rw and ro workloads

■ Continuous backup (including snapshots)

■ Point In Time Recovery (incl. snapshots)

■ Scale up/down of read-only replicas

■ “Security by default”, including mTLS

■ Native Prometheus exporter

■ Logging to stdout in JSON format

■ Rolling updates, incl. minor Postgres releases

■ Synchronous replication

■ Online import of Postgres databases

■ Separate volume for WALs

■ Postgres tablespaces, including temporary

■ Replica clusters and distributed topologies

■ Declarative role management

■ Declarative hibernation and fencing

■ CNPG-I - interface to develop CNPG plugins

■ Connection pooling

■ Postgres extensions (pgvector, PostGIS, …)

https://cloudnative-pg.io/docs/devel/#main-features


©EDB 2024 — ALL RIGHTS RESERVED.

CloudNativePG - Latest Release: 1.28

https://cloudnative-pg.io/docs/1.28/release_notes/v1.28

■ Changes
●

■ Features
●

https://cloudnative-pg.io/docs/1.28/release_notes/v1.28
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How to install it?
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1. Install the CNPG Operator v1.27.2

2. Check for resources
● Analyse the resources created

■ Deployment
■ Pod

https://cloudnative-pg.io/docs/devel/installation
_upgrade

$ kubectl apply --server-side -f  
https://raw.githubusercontent.com/cloudnative-pg/cloudn
ative-pg/release-1.27/releases/cnpg-1.27.2.yaml

$ kubectl get deployments,pods -n cnpg-system

Using the manifest

https://cloudnative-pg.io/docs/devel/installation_upgrade
https://cloudnative-pg.io/docs/devel/installation_upgrade
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1. Install the kubectl plugin for CNPG

2. Familiarize yourself with its commands:

● --help

3. Check the install command

https://cloudnative-pg.io/docs/devel/kubectl-plugin/

$ curl -sSfL 
https://github.com/cloudnative-pg/cloudnative-pg/raw/ma
in/hack/install-cnpg-plugin.sh | \
  sudo sh -s -- -b /usr/local/bin

$ kubectl cnpg --help

$ kubectl cnpg install generate \
  --control-plane \
  --version 1.27.2 \
  | kubectl apply -f - --server-side

Using the CNPG Plugin

https://cloudnative-pg.io/docs/devel/kubectl-plugin/
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1. Create a YAML file with the basic CNPG 

cluster definition

2. Open a new terminal window to monitor 

resources

3. Apply the cluster manifest

4. Check for the created resources:
○ pods
○ services
○ pvc

https://cloudnative-pg.io/docs/devel/quickstart/
#part-3-deploy-a-postgresql-cluster

Deploy the first Cluster
$ cat <<EOF > ./cluster-example.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: cluster-example
spec:
  instances: 3
  storage:
    size: 1Gi
EOF

$ kubectl get pods -w

$ kubectl apply -f cluster-example.yaml

$ kubectl get clusters,pods,pvc,svc,ep

$ kubectl cnpg status cluster-example

https://cloudnative-pg.io/docs/devel/quickstart/#part-3-deploy-a-postgresql-cluster
https://cloudnative-pg.io/docs/devel/quickstart/#part-3-deploy-a-postgresql-cluster
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CNPG Cluster Architecture
k8s-eu

Postgres node

PRIMARY

PGDATA PVC

WALs
PVC

Postgres node

STANDBY

PGDATA PVC

WALs
PVC

Postgres node

STANDBY

PGDATA PVC

WALs
PVC

minio-eu WAL Archive Backup catalog
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How to manage PostgreSQL roles?
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● Defines roles in a declarative manner

● Manages full lifecycle of Roles

● Uses PostgreSQL functions:
○ CREATE ROLE
○ ALTER ROLE

● Requires human intervention in case of errors

● Passwords:

○ Uses secrets reference for passwords
■ plain text
■ md5 or scram (not usable by apps)

○ Empty password = no password
○ Certificates are preferable

https://cloudnative-pg.io/docs/devel/declarative
_role_management

Declarative Roles status:
  […snipped…]
  managedRolesStatus:
    byStatus:
      not-managed:
      - app
      pending-reconciliation:
      - dante
      - petrarca
      reconciled:
      - ariosto
      reserved:
      - postgres
      - streaming_replica
    cannotReconcile:
      dante:
      - 'could not perform DELETE on role dante: owner 
of database inferno'
      petrarca:
      - 'could not perform UPDATE_MEMBERSHIPS on role 
petrarca: role "poets" does not exist'

https://cloudnative-pg.io/docs/devel/declarative_role_management
https://cloudnative-pg.io/docs/devel/declarative_role_management
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Declarative Roles $ kubectl cnpg psql cluster-example -- app -c “\duS+”

$ # Edit cluster-example.yaml and add the following:
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
spec:
[...]
  managed:
    roles:
    - name: dante
      ensure: present
      comment: Dante Alighieri
      login: true
      superuser: false
      inRoles:
        - pg_monitor
        - pg_signal_backend
[...]

$ kubectl apply -f cluster-example.yaml

$ kubectl cnpg psql cluster-example -- app -c “\duS+”

1. Check the current roles in Postgres

2. Edit the cluster manifest

3. Add the roles you want

4. Apply the cluster-example.yaml 

manifest

5. Check the presence of wanted roles in 

Postgres
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$ kubectl cnpg psql cluster-example -- app \
  -c “ALTER ROLE dante NOLOGIN”

$ kubectl cnpg psql cluster-example -- app -c “\duS+ 
dante”

$ kubectl cnpg reload cluster-example

$ kubectl cnpg psql cluster-example -- app -c “\duS+ 
dante”

Declarative Roles

1. Manually change the role in Postgres

2. Check for the role changes

3. Trigger a reconciliation loop

4. Check the role
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How to manage PostgreSQL databases?
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● Defines databases in a declarative manner

● Separate Custom Resource Definition (CRD)

● Manages a database with optionals:
○ extensions
○ schema
○ FDW

● Two different database deletion methods:
○ Deleting the Database CRD with 

databaseReclaimPolicy:
■ retain
■ delete

○ Declaratively with ensure: absent

https://cloudnative-pg.io/docs/devel/declarative
_database_management

Declarative Databases

apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
  generation: 1
  name: cluster-example-one
spec:
spec:
  databaseReclaimPolicy: delete
  cluster:
    name: cluster-example
  name: one
  owner: app
status:
  observedGeneration: 1
  applied: true

https://cloudnative-pg.io/docs/devel/declarative_database_management
https://cloudnative-pg.io/docs/devel/declarative_database_management
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$ kubectl cnpg psql cluster-example -- -c “\l”

$ # Create a new Database manifest:

$ cat <<EOF > database_one.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
  name: cluster-example-one
spec:
spec:
  databaseReclaimPolicy: retain
  name: one
  owner: app
  cluster:
    name: cluster-example
EOF

$ kubectl apply -f database_one.yaml

$ kubectl cnpg psql cluster-example -- -c “\l”

Declarative Databases

1. Check for the current databases in 

Postgres

2. Create a Database resource in a YAML file

3. Apply the database_one.yaml manifest

4. Check for the changes in Postgres
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1. Delete the database resource

2. Check for the changes in Postgres

3. Edit the database manifest

4. Apply the database.yaml manifest

5. Check for the changes in Postgres again

$ kubectl delete -f database_one.yaml

$ kubectl cnpg psql cluster-example -- -c “\l”

$ cat <<EOF > database_one.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
  name: cluster-example-one
spec:
spec:
  databaseReclaimPolicy: retain
  name: one
  owner: app
  ensure: absent
  cluster:
    name: cluster-example
EOF

$ kubectl apply -f database_one.yaml

$ kubectl cnpg psql cluster-example -- -c “\l”

Declarative Databases
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How to manage PostgreSQL extensions?
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● Manages extensions in a declarative manner

● List of extensions in the Database manifest

● Uses PostgreSQL functions:
○ CREATE EXTENSION
○ DROP EXTENSION
○ ALTER EXTENSION (limited)

● Requires extensions to be available in the 
PostgreSQL image
○ Single heavy PG image which contains 

required extensions files

https://cloudnative-pg.io/docs/devel/declarative_databas
e_management#managing-extensions-in-a-database

Declarative Extensions

apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
  name: cluster-ext-app
spec:
  cluster:
    name: cluster-ext
  name: app
  owner: app
  extensions:
  - name: vector
    version: '0.8.1'

https://cloudnative-pg.io/docs/devel/declarative_database_management#managing-extensions-in-a-database
https://cloudnative-pg.io/docs/devel/declarative_database_management#managing-extensions-in-a-database
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$ cat <<EOF > cluster-ext.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: cluster-ext
spec:
  imageName: 
  instances: 1
  storage:
    size: 1Gi
EOF

$ kubectl apply -f cluster-ext.yaml

$ kubectl cnpg psql cluster-ext -- app -c “\dx”

Declarative Extensions

1. Create a Cluster YAML manifest

2. Apply the cluster-ext.yaml manifest

3. Check for the current extensions in 

Postgres
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$ cat <<EOF > cluster-ext_db-app.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
  name: cluster-ext-app
spec:
  name: app
  owner: app
  cluster:
    name: cluster-ext
  extensions:
  - name: vector
    ensure: present
EOF

$ kubectl apply -f cluster-ext_db-app.yaml

$ kubectl cnpg psql cluster-ext -- app -c “\dx”

Declarative Extensions

1. Create the cluster-ext_db-one.yaml 

manifest

2. Apply the cluster-ext_db-one.yaml 

manifest

3. Check for the changes in Postgres
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Image Volume Extensions apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
  name: cluster-example-app
spec:
  cluster:
    name: cluster-example-ext
  name: app
  owner: app
  extensions:
  - name: vector
    version: '0.8.1'
---
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: cluster-example-ext
spec:
  imageName: ghcr.io/cloudnative-pg/postgresql:18-minimal-trixie
  instances: 1

  storage:
    size: 1Gi

  postgresql:
    extensions:
    - name: vector
      image:
        reference: ghcr.io/cloudnative-pg/pgvector:0.8.1-18-trixie

● Requires at least:
○ CNPG v1.27
○ PostgreSQL v18
○ Kubernetes v1.33

● Allows dynamically adding extensions as 

dedicated OCI images

● Avoids heavy PostgreSQL image

● Decuple upgrades
○ PostgreSQL
○ Extensions

● Easier to maintain

https://cloudnative-pg.io/docs/devel/imagevolu
me_extensions

https://cloudnative-pg.io/docs/devel/imagevolume_extensions
https://cloudnative-pg.io/docs/devel/imagevolume_extensions
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$ cat <<EOF > cluster-postgis.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: postgis-example
spec:
  instances: 1
  imageName: ghcr.io/cloudnative-pg/postgis:18-3.6-system-trixie
  storage:
    size: 1Gi
  postgresql:
    parameters:
      log_statement: ddl
EOF

$ cat <<EOF > cluster-postgis_db-app.yaml 
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
  name: postgis-example-app
spec:
  name: app
  owner: app
  cluster:
    name: postgis-example
  extensions:
  - name: postgis
  - name: postgis_topology
  - name: fuzzystrmatch
  - name: postgis_tiger_geocoder
EOF

PostGIS - Single Image

1. Select image:

● Different PostgreSQL image with 

PostGIS included

2. Create a Cluster resource in a YAML file

3. Create a Database resource in a YAML file

https://cloudnative-pg.io/docs/devel/postgis/

https://cloudnative-pg.io/docs/devel/postgis/
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$ kubectl apply -f cluster-postgis.yaml

$ kubectl apply -f cluster-postgis_db-app.yaml

$ kubectl cnpg psql postgis-example -- app -c “\dx”

PostGIS - Single Image

1. Apply the cluster-postgis.yaml 

manifest for the cluster

2. Apply the 

cluster-postgis_db-app.yaml 

manifest for the database

3. Check for the changes in Postgres
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$ cat <<EOF > cluster-postgis-ive.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: cluster-postgis-ive
spec:
  imageName: 
ghcr.io/cloudnative-pg/postgresql:18-minimal-trixie
  instances: 1

  storage:
    size: 1Gi

  postgresql:
    extensions:
    - name: postgis
      image:
        reference: 
ghcr.io/cloudnative-pg/postgis-extension:3.6.1-18-trixie
      ld_library_path:
      - system
EOF

$ kubectl apply -f cluster-ive.yaml

PostGIS - Image Volume Extension

1. Select images:

● PostgreSQL minimal image

● PostGIS as Image Volume Extension

2. Create a Cluster resource in a YAML file

3. Apply the cluster-postgis-ive.yaml 

manifest

https://github.com/cloudnative-pg/postgres-exten
sions-containers/

https://github.com/cloudnative-pg/postgres-extensions-containers/
https://github.com/cloudnative-pg/postgres-extensions-containers/


©EDB 2024 — ALL RIGHTS RESERVED.

$ cat <<EOF > cluster-ive_db-app.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
  name: postgis-ive-app
spec:
  name: app
  owner: app
  cluster:
    name: cluster-postgis-ive
  extensions:
  - name: postgis
    version: '3.6.1'
  - name: postgis_raster
  - name: postgis_sfcgal
  - name: fuzzystrmatch
  - name: address_standardizer
  - name: address_standardizer_data_us
  - name: postgis_tiger_geocoder
  - name: postgis_topology
EOF

$ kubectl apply -f postgis-ive_db-app.yaml

PostGIS - Image Volume Extension

1. Create a Database resource in a YAML file

2. Apply the postgis-ive_db-app 

manifest for the database

3. Check for the changes in Postgres
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How to manage PostgreSQL settings?
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PostgreSQL Setting
$ cat <<EOF > ./setting-example.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: setting-example
spec:
  instances: 3
  storage:
    size: 1Gi

  postgresql:
     parameters:
        shared_buffers: 128MB
EOF

$ kubectl apply -f setting-example.yaml

1. create a 3 instance cluster

2. Apply the manifest

https://cloudnative-pg.io/docs/1.28/postgresql_
conf#the-postgresql-section

https://cloudnative-pg.io/docs/1.28/postgresql_conf#the-postgresql-section
https://cloudnative-pg.io/docs/1.28/postgresql_conf#the-postgresql-section
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PostgreSQL Setting
$ kubectl get cluster setting-example -o yaml |grep 
-A25 parameters:

$ kubectl exec -it setting-example-1 -c postgres -- 
psql -c "show shared_buffers;"

$ sed -i 's/128MB/256MB/' setting-example.yaml

$ cat setting-example.yaml

$ kubectl apply -f setting-example.yaml
 
$ kubectl get cluster setting-example -o yaml |grep 
-A25 parameters:

$ kubectl exec -it setting-example-1 -c postgres -- 
psql -c "show shared_buffers;"

1. Check the current value of shared_buffers 

in the cluster yaml

2. Check the current value in postgres

3. Add the desired value using cluster 

Manifest

4. watch the cluster pods/status parallely

5. verify the desired value in the cluster yaml

6. Check the desired value in postgres



©EDB 2024 — ALL RIGHTS RESERVED.

How to import a PostgreSQL databases?
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$ kubectl cnpg psql setting-example -- app

app=# CREATE TABLE users (
  id SERIAL PRIMARY KEY,
  username VARCHAR(50) NOT NULL,
  email VARCHAR(100) NOT NULL,
  created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

INSERT INTO users (username, email) VALUES
  ('john_doe', 'john@example.com'),
  ('jane_smith', 'jane@example.com'),
  ('bob_jones', 'bob@example.com');

-- Verify the data
SELECT * FROM users;

$ kubectl patch cluster setting-example --type merge -p 
'{"spec":{"enableSuperuserAccess":true}}'

Import database

1. Create a table and insert data in source 

cluster in app db.

2. Enable super user in source cluster

https://cloudnative-pg.io/docs/1.28/database_i
mport#the-microservice-type 

https://cloudnative-pg.io/docs/1.28/database_import#the-microservice-type
https://cloudnative-pg.io/docs/1.28/database_import#the-microservice-type
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$ cat <<EOF > ./import.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: cluster-import-microservice
spec:
  instances: 1
  bootstrap:
    initdb:
      import:
        type: microservice
        databases:
          - app
        source:
          externalCluster: setting-example
  storage:
    size: 1Gi
  externalClusters:
    - name: setting-example
      connectionParameters:
        host: setting-example-rw.default.svc.cluster.local
        user: postgres
        dbname: postgres
      password:
        name: setting-example-superuser
        key: password
EOF

Import database

1. Configure the yaml for import using app db
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$ kubectl apply -f import.yaml

$ kubectl get pods -w

$ kubectl get cluster -w

$ kubectl cnpg psql cluster-import-microservice -- \
  app -c "SELECT * FROM users"

Import database

1. Apply the cluster manifest

2. Verify data.
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What happens during an incident?
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Different approaches:

▪ Pod deletion:

● Delete of the PostgreSQL’s primary Pod

▪ PVC deletion:

● Delete the PVC associated to PostgreSQL’s primary Pod

▪ Node deletion (not covered in this course):

● Turn off or detach the Kubernetes node where the PostgreSQL’s primary Pod is running

https://cloudnative-pg.io/docs/devel/failure_modes/

Incident Simulation

https://cloudnative-pg.io/docs/devel/failure_modes/
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$ kubectl get cluster setting-example 

$ kubectl get cluster setting-example -w

#Replace Primary pod no. 
$ kubectl delete po setting-example-N

$ kubectl cnpg status setting-example

Failover

1. Check the cluster status and primary

2. Delete primary pod

3. Watch the cluster status
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$ kubectl get cluster setting-example 

$ kubectl cluster status -w

$ kubectl get pod -w|grep "setting-example"

$ kubectl delete pvc,pod setting-example-N
$ # where N is the ID of the primary pod

$ kubectl cnpg status setting-example

Failover

1. Check the cluster status and primary

2. Delete primary pod and pvc

3. Watch the cluster pod

4. Watch the cluster status
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How to read the logs?
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$ kubectl get cluster setting-example -o yaml | grep 
logLevel

$ kubectl cnpg report operator -n cnpg-system

$ kubectl logs deploy/cnpg-controller-manager -n \
 cnpg-system

$ kubectl logs setting-example-1

$ kubectl cnpg logs cluster setting-example |\
  kubectl cnpg logs pretty

Logs

1. Cluster logs

2. Operator logs

3. Postgres logs

https://cloudnative-pg.io/docs/1.28/kubectl-p
lugin#logs
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How to manage CNPG upgrades?
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Three methods:

1. Automatic (default)
● Automatic switchover or restart of the 

PostgreSQL’s primary Pod
2.  Semi-automatic

● Automatic restart of the PostgreSQL’s 
replica Pod(s)

● Manual switchover or restart of the 
PostgreSQL’s primary Pod

3. In-place binary replacement
● Breaks immutability concept
● Controlled by Operator’s Configuration

CNPG Operator Rolling Updates (default)
Two phases:

1. Operator’s upgrade

● Operator’s container image

● Custom Resource Definition upgrade

2. Instance Manager upgrade

● Within the PostgreSQL instance Pod

https://cloudnative-pg.io/docs/devel/installation_upgrade/#upgrades

https://cloudnative-pg.io/docs/devel/installation_upgrade/#upgrades
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CNPG Operator’s Upgrade

Current version running: CNPG v1.27.2

1. Monitor resources from two different terminals

● One for cnpg-system namespace

● One for the cluster namespace (default)

2. Install the new CNPG version: v1.28.0

$ kubectl get pods -n cnpg-system -w

$ kubectl get pods -w

$ kubectl apply --server-side -f \
  
https://raw.githubusercontent.com/cloudnative-pg/cloudn
ative-pg/release-1.28/releases/cnpg-1.28.0.yaml
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How to manage PostgreSQL upgrades?
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PostgreSQL Rolling Updates

Tow contexts:

1. Minor Version upgrades:

● Managed as a Rolling Updates 

like the Operator’s upgrade

● Simple PostgreSQL’s container image 

replacement

2. MAJOR Version upgrades:

● More complex operation

● Different methods

https://cloudnative-pg.io/docs/devel/postgres_upgrades/

Major Upgrade’s methods:

1. Offline

● Logical dump/restore from one instance 

to another - duplicate resources’ 

consumption

● In-place upgrade - data directory 

replacement (pg_upgrade --link)

2. Online

● PostgreSQL’s native Logical Replication 

from one instance to another -  duplicate 

resources’ consumption

https://cloudnative-pg.io/docs/devel/postgres_upgrades/
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1. Having a 3 PostgreSQL instance cluster at 

version 17

2. Monitor resources from a separate terminal

3. Apply the manifest and wait for the cluster to be 

ready

Minor Version Upgrade 

$ cat <<EOF > ./cluster-upgrade.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: cluster-upgrade
spec:
  imageName: ghcr.io/cloudnative-pg/postgresql:17.0
  instances: 3
  storage:
    size: 1Gi
EOF

$ kubectl get pods -w

$ kubectl apply -f ./cluster-upgrade.yaml



©EDB 2024 — ALL RIGHTS RESERVED.

1. Change the PostgreSQL image TAG from 17.0 

to 17.2 in the YAML manifest

2. Apply the cluster-upgrade.yaml manifest 

and verify the cluster status with the CNPG 

plugin

3. Repeat the plugin’s status command a few 

times

Minor Version Upgrade 

$ sed -i 's/17\.0/17\.2/' cluster-upgrade.yaml

$ # Verify the changes
$ cat ./cluster-upgrade.yaml

$ kubectl apply -f ./cluster-upgrade.yaml \
  && kubectl cnpg status cluster-upgrade

$ kubectl cnpg status cluster-upgrade
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1. Using the cluster created in the previous 

exercise at version 17.2

2. Monitor resources from a separate terminal

3. Change the PostgreSQL image TAG from 17.2 

to 18.0 in the YAML manifest

4. Apply the cluster-upgrade.yaml manifest 

and verify the cluster status with the CNPG 

plugin

5. Repeat the plugin’s status command a few 

times

$ kubectl get pods -w

$ sed -i 's/17\.2/18\.0/' cluster-upgrade.yaml

$ # Verify the changes
$ cat ./cluster-upgrade.yaml

$ kubectl apply -f ./cluster-upgrade.yaml \
  && kubectl cnpg status cluster-upgrade

$ kubectl cnpg status cluster-upgrade

MAJOR Version Upgrade
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How to take a backup?
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Methods:

▪ barmanObjectStore (legacy)

● Uses the in-core Barman Cloud included in PostgreSQL images to take backups

● Deprecated 

▪ volumeSnapshots

● Uses Kubernetes native API to take snapshots of the volumes, when supported by CSI

● Fastest to take

● Still requires WAL archiving to achieve PITR

▪ plugins

● Uses external CNPG-I plugins (es: Plugin Barman Cloud) 

https://cloudnative-pg.io/docs/devel/backup/

CNPG Cluster Backup

https://cloudnative-pg.io/docs/devel/backup/
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How it works:
▪ From CNPG v1.26.0

▪ Integration with CNPG Cluster

● Container Sidecar 

▪ New CRD

● ObjectStore

▪ Backups and WAL files

● tags

● extra barman options

Features:
▪ Hot (online) backups

● Compression, Encryption, Parallelism

▪ Continuous WAL archiving 
● Object Stores
● Compression, Encryption, Parallelism 

▪ Retention Policies

▪ Data Restore
● Full Recovery
● Point In Time Recovery

CNPG-I Plugin Barman Cloud

https://cloudnative-pg.io/plugin-barman-cloud/docs/intro/

https://cloudnative-pg.io/plugin-barman-cloud/docs/intro/
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1. Deploy the Plugin Barman Cloud

2. Wait for the deployment to be ready

3. From the cnpg-playground repo, deploy the 

ObjectStore manifest for EU minio

4. Check for the ObjectStore resource

Deploy Barman Cloud

$ kubectl apply -f 
https://github.com/cloudnative-pg/plugin-barman-cloud/r
eleases/download/v0.10.0/manifest.yaml

$ kubectl rollout status deployment \
  -n cnpg-system barman-cloud

$ kubectl apply -f \
  demo/yaml/object-stores/minio-eu.yaml

$ kubectl get objectstore
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1. Create a cluster YAML file with the backup 

configuration

2. Monitor resources in a separate terminal

3. Apply the  manifest

4. Check for the cluster

● Use the CNPG plugin status command

● Use the kubectl get command to 

check for the sidecar container

Deploy CNPG Cluster $ cat <<EOF > ./cluster-with-backup.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: cluster-with-backup
spec:
  instances: 2
  storage:
    size: 1Gi

  plugins:
  - name: barman-cloud.cloudnative-pg.io
    isWALArchiver: true
    parameters:
      barmanObjectName: minio-eu
      serverName: cluster-wit-backup
EOF

$ kubectl apply -f cluster-with-backup.yaml

$ kubectl cnpg status cluster-with-backup

$ kubectl get pod cluster-with-backup
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First CNPG Backup $ kubectl cnpg psql cluster-with-backup -- app

app=# CREATE TABLE numbers(x int);

app=# INSERT INTO numbers (SELECT 
generate_series(1,1000000));

app=# \q

$ cat <<EOF > backup.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Backup
metadata:
  name: backup-example
spec:
  method: plugin
  cluster:
    name: cluster-with-backup
  pluginConfiguration:
    name: barman-cloud.cloudnative-pg.io
EOF

1. Generate data inside the database

● Access to the app DB with the plugin

● Create the numbers table

● Insert 1.000.000 rows into the table

2. Create the a backup manifest

https://cloudnative-pg.io/docs/devel/backup/#examp
le-requesting-an-on-demand-backup

https://cloudnative-pg.io/docs/devel/backup/#example-requesting-an-on-demand-backup
https://cloudnative-pg.io/docs/devel/backup/#example-requesting-an-on-demand-backup
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First CNPG Backup

$ kubectl apply -f backup.yaml

$ kubectl cnpg backup cluster-with-backup \
  --immediate-checkpoint true \
  --backup-target primary \
  --method plugin \
  --plugin-name barman-cloud.cloudnative-pg.io

$ kubectl get backup

$ kubectl get backup -o yaml

$ kubectl cnpg status cluster-with-backup

1. Create the first two backups

● Using the backup manifest

● Using the plugin’s backup command

2. Analyse the backup resources

3. Analyse the cluster status

● Check how the First Point of 

Recoverability field has changed
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How to recover data from a backup?
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Methods:

▪ barmanObjectStore

▪ volumeSnapshots

▪ plugin

CNPG Cluster Recovery

https://cloudnative-pg.io/docs/devel/recovery/

CloudNativePG recovery must know:

▪ Cannot recover a Cluster in-place

▪ It’s a Bootstrap method for a different Cluster

▪ WAL archiving must be redirected to a different 

object store path (hence the new Cluster name)

● to prevent WAL files conflicts

(overwriting original ones)

https://cloudnative-pg.io/docs/devel/recovery/
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1. Create a manifest with:

a. the recovery method for the 

bootstrap section that points to the 

right externalClusters

b. the externalClusters section pointing 

to the right barmanObjectName and 

serverName.

$ cat <<EOF > ./cluster-recovery.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
  name: cluster-recovery
spec:
  instances: 1
  storage:
    size: 1Gi

  bootstrap:
    recovery:
      source: origin

  externalClusters:
    - name: origin
      plugin:
        name: barman-cloud.cloudnative-pg.io
        parameters:
          barmanObjectName: minio-eu
          serverName: cluster-with-backup
EOF

CNPG Cluster Recovery
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1. Monitor resources in a separate terminal

2. Apply the cluster-recovery manifest

3. Check for the cluster status

4. Verify the data in the app DB

CNPG Recovery

$ kubectl get pods -w

$ kubectl apply -f ./cluster-recovery.yaml

$ kubectl cnpg status cluster-recovery

$ kubectl cnpg psql cluster-recovery -- app \
  -c “SELECT COUNT(*) numbers”
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Questions?
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Thank you!

Let’s keep in touch!

Website: cloudnative-pg.io

Blog: cloudnative-pg.io/blog/

GitHub Discussions: github.com/cloudnative-pg/cloudnative-pg/discussions

Slack: communityinviter.com/apps/cloud-native/cncf

LinkedIn: linkedin.com/company/cloudnative-pg/

Mastodon: @CloudNativePG@mastodon.social

Bluesky: @CloudNativePG.bsky.social

http://cloudnative-pg.io
http://cloudnative-pg.io/blog/
https://github.com/cloudnative-pg/cloudnative-pg/discussions
http://github.com/cloudnative-pg/cloudnative-pg/discussions
http://github.com/cloudnative-pg/cloudnative-pg/discussions
http://communityinviter.com/apps/cloud-native/cncf
http://linkedin.com/company/cloudnative-pg/
https://mastodon.social/@CloudNativePG
https://bsky.app/profile/cloudnativepg.bsky.social

