
PostgreSQL on Kubernetes
with CloudNativePG (CNPG)

Danish Khan
Neel Patel

©EDB 2024 — ALL RIGHTS RESERVED.

Danish Khan

DoKC Ambassador
SDE at EDB
CloudNativePG Contributor

github.com/danishedb
danish.khan@enterprisedb.com

©EDB 2024 — ALL RIGHTS RESERVED.

Neel Patel

Principal Software Engineer at EDB

https://github.com/neel5481
neel.patel@enterprisedb.com

©EDB 2024 — ALL RIGHTS RESERVED.

Agenda

■ Introduction to CloudNativePG (CNPG)
■ Installation of the kubectl plugin for CNPG
■ First deployment of a CNPG cluster
■ PostgreSQL configuration, databases and roles

management
■ PostgreSQL Extensions
■ Database import
■ Incident simulation (failover showcase)
■ Log reading
■ Upgrade of the Operator and the PostgreSQL

version (minor, and major)
■ Setup and execution of the first backup
■ Restore from a backup

©EDB 2024 — ALL RIGHTS RESERVED.

To speed up the process and let you follow the workshop seamlessly:

▪ LINKS.md

● contains the list of links mentioned during the course

▪ COMMANDS.md

● contains the list of commands in the order of appearance in this course

Useful Contents

©EDB 2024 — ALL RIGHTS RESERVED.

cnpg-playground Requirements:

▪ Docker
▪ Kind
▪ kubectl
▪ CNPG Plugin
▪ git

Then:

▪ Set limits with sysctl (linux)
▪ Exec setup.sh script
▪ Export of the Kube config
▪ Set EU context
▪ Creare gli alias
▪ Test the connection

https://github.com/cloudnative-pg/cnpg-playground/

Setup environment
$ # For Linux users
$ sudo sysctl \
 fs.inotify.max_user_watches=524288 \
 fs.inotify.max_user_instances=512

$ cd cnpg-playground

$ # Edit the ./k8s/kind-cluster.yaml
$ # Add the following configuration
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
name: cnpg
featureGates:
 ImageVolume: true

$./scripts/setup.sh eu

$ export
KUBECONFIG=<path-to>/cnpg-playground/k8s/kube-config.yaml

$ kubectl config use-context kind-k8s-eu

$. <path-to>/bash_aliases.sh

$ kubectl get pods -A
$ keu get pods -A

https://github.com/cloudnative-pg/cnpg-playground/

©EDB 2024 — ALL RIGHTS RESERVED.

CloudNativePG

■ A CNCF Sandbox Operator
■ Manages the whole lifecycle of a

PostgreSQL cluster
■ Declarative Configuration
■ Runs on many Kubernetes distribution:

● Vanilla
● OpenShift
● Cloud Service Providers K8S env
● kind
● …

https://cloudnative-pg.io/
https://github.com/cloudnative-pg/cloudnative-pg

https://cloudnative-pg.io/
https://github.com/cloudnative-pg/cloudnative-pg

©EDB 2024 — ALL RIGHTS RESERVED.

■ Manages Operands
● PostgreSQL container images

■ Extends Kubernetes with:
● Controllers

■ Takes advantage of the Kubernetes API
to reconcile the PostgreSQL cluster state

● Custom Resource Definitions
■ Backups
■ Clusters
■ ImageCatalogs
■ Poolers
■ Databases
■ …

https://cloudnative-pg.io/docs/devel/

How does it work?
 Minimum required* YAML definition:

 * Convention over configuration paradigm:
 all the other parameters are set by default.

https://cloudnative-pg.io/docs/devel/

©EDB 2024 — ALL RIGHTS RESERVED.

CloudNativePG - Main Features
https://cloudnative-pg.io/docs/devel/#main-features

■ High Availability and Self-Healing

■ Support for local PVCs

■ Managed services for rw and ro workloads

■ Continuous backup (including snapshots)

■ Point In Time Recovery (incl. snapshots)

■ Scale up/down of read-only replicas

■ “Security by default”, including mTLS

■ Native Prometheus exporter

■ Logging to stdout in JSON format

■ Rolling updates, incl. minor Postgres releases

■ Synchronous replication

■ Online import of Postgres databases

■ Separate volume for WALs

■ Postgres tablespaces, including temporary

■ Replica clusters and distributed topologies

■ Declarative role management

■ Declarative hibernation and fencing

■ CNPG-I - interface to develop CNPG plugins

■ Connection pooling

■ Postgres extensions (pgvector, PostGIS, …)

https://cloudnative-pg.io/docs/devel/#main-features

©EDB 2024 — ALL RIGHTS RESERVED.

CloudNativePG - Latest Release: 1.28

https://cloudnative-pg.io/docs/1.28/release_notes/v1.28

■ Changes
●

■ Features
●

https://cloudnative-pg.io/docs/1.28/release_notes/v1.28

©EDB 2024 — ALL RIGHTS RESERVED.

How to install it?

©EDB 2024 — ALL RIGHTS RESERVED.

1. Install the CNPG Operator v1.27.2

2. Check for resources
● Analyse the resources created

■ Deployment
■ Pod

https://cloudnative-pg.io/docs/devel/installation
_upgrade

$ kubectl apply --server-side -f
https://raw.githubusercontent.com/cloudnative-pg/cloudn
ative-pg/release-1.27/releases/cnpg-1.27.2.yaml

$ kubectl get deployments,pods -n cnpg-system

Using the manifest

https://cloudnative-pg.io/docs/devel/installation_upgrade
https://cloudnative-pg.io/docs/devel/installation_upgrade

©EDB 2024 — ALL RIGHTS RESERVED.

1. Install the kubectl plugin for CNPG

2. Familiarize yourself with its commands:

● --help

3. Check the install command

https://cloudnative-pg.io/docs/devel/kubectl-plugin/

$ curl -sSfL
https://github.com/cloudnative-pg/cloudnative-pg/raw/ma
in/hack/install-cnpg-plugin.sh | \
 sudo sh -s -- -b /usr/local/bin

$ kubectl cnpg --help

$ kubectl cnpg install generate \
 --control-plane \
 --version 1.27.2 \
 | kubectl apply -f - --server-side

Using the CNPG Plugin

https://cloudnative-pg.io/docs/devel/kubectl-plugin/

©EDB 2024 — ALL RIGHTS RESERVED.

1. Create a YAML file with the basic CNPG

cluster definition

2. Open a new terminal window to monitor

resources

3. Apply the cluster manifest

4. Check for the created resources:
○ pods
○ services
○ pvc

https://cloudnative-pg.io/docs/devel/quickstart/
#part-3-deploy-a-postgresql-cluster

Deploy the first Cluster
$ cat <<EOF > ./cluster-example.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: cluster-example
spec:
 instances: 3
 storage:
 size: 1Gi
EOF

$ kubectl get pods -w

$ kubectl apply -f cluster-example.yaml

$ kubectl get clusters,pods,pvc,svc,ep

$ kubectl cnpg status cluster-example

https://cloudnative-pg.io/docs/devel/quickstart/#part-3-deploy-a-postgresql-cluster
https://cloudnative-pg.io/docs/devel/quickstart/#part-3-deploy-a-postgresql-cluster

©EDB 2024 — ALL RIGHTS RESERVED.

CNPG Cluster Architecture
k8s-eu

Postgres node

PRIMARY

PGDATA PVC

WALs
PVC

Postgres node

STANDBY

PGDATA PVC

WALs
PVC

Postgres node

STANDBY

PGDATA PVC

WALs
PVC

minio-eu WAL Archive Backup catalog

©EDB 2024 — ALL RIGHTS RESERVED.

How to manage PostgreSQL roles?

©EDB 2024 — ALL RIGHTS RESERVED.

● Defines roles in a declarative manner

● Manages full lifecycle of Roles

● Uses PostgreSQL functions:
○ CREATE ROLE
○ ALTER ROLE

● Requires human intervention in case of errors

● Passwords:

○ Uses secrets reference for passwords
■ plain text
■ md5 or scram (not usable by apps)

○ Empty password = no password
○ Certificates are preferable

https://cloudnative-pg.io/docs/devel/declarative
_role_management

Declarative Roles status:
 […snipped…]
 managedRolesStatus:
 byStatus:
 not-managed:
 - app
 pending-reconciliation:
 - dante
 - petrarca
 reconciled:
 - ariosto
 reserved:
 - postgres
 - streaming_replica
 cannotReconcile:
 dante:
 - 'could not perform DELETE on role dante: owner
of database inferno'
 petrarca:
 - 'could not perform UPDATE_MEMBERSHIPS on role
petrarca: role "poets" does not exist'

https://cloudnative-pg.io/docs/devel/declarative_role_management
https://cloudnative-pg.io/docs/devel/declarative_role_management

©EDB 2024 — ALL RIGHTS RESERVED.

Declarative Roles $ kubectl cnpg psql cluster-example -- app -c “\duS+”

$ # Edit cluster-example.yaml and add the following:
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
spec:
[...]
 managed:
 roles:
 - name: dante
 ensure: present
 comment: Dante Alighieri
 login: true
 superuser: false
 inRoles:
 - pg_monitor
 - pg_signal_backend
[...]

$ kubectl apply -f cluster-example.yaml

$ kubectl cnpg psql cluster-example -- app -c “\duS+”

1. Check the current roles in Postgres

2. Edit the cluster manifest

3. Add the roles you want

4. Apply the cluster-example.yaml

manifest

5. Check the presence of wanted roles in

Postgres

©EDB 2024 — ALL RIGHTS RESERVED.

$ kubectl cnpg psql cluster-example -- app \
 -c “ALTER ROLE dante NOLOGIN”

$ kubectl cnpg psql cluster-example -- app -c “\duS+
dante”

$ kubectl cnpg reload cluster-example

$ kubectl cnpg psql cluster-example -- app -c “\duS+
dante”

Declarative Roles

1. Manually change the role in Postgres

2. Check for the role changes

3. Trigger a reconciliation loop

4. Check the role

©EDB 2024 — ALL RIGHTS RESERVED.

How to manage PostgreSQL databases?

©EDB 2024 — ALL RIGHTS RESERVED.

● Defines databases in a declarative manner

● Separate Custom Resource Definition (CRD)

● Manages a database with optionals:
○ extensions
○ schema
○ FDW

● Two different database deletion methods:
○ Deleting the Database CRD with

databaseReclaimPolicy:
■ retain
■ delete

○ Declaratively with ensure: absent

https://cloudnative-pg.io/docs/devel/declarative
_database_management

Declarative Databases

apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
 generation: 1
 name: cluster-example-one
spec:
spec:
 databaseReclaimPolicy: delete
 cluster:
 name: cluster-example
 name: one
 owner: app
status:
 observedGeneration: 1
 applied: true

https://cloudnative-pg.io/docs/devel/declarative_database_management
https://cloudnative-pg.io/docs/devel/declarative_database_management

©EDB 2024 — ALL RIGHTS RESERVED.

$ kubectl cnpg psql cluster-example -- -c “\l”

$ # Create a new Database manifest:

$ cat <<EOF > database_one.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
 name: cluster-example-one
spec:
spec:
 databaseReclaimPolicy: retain
 name: one
 owner: app
 cluster:
 name: cluster-example
EOF

$ kubectl apply -f database_one.yaml

$ kubectl cnpg psql cluster-example -- -c “\l”

Declarative Databases

1. Check for the current databases in

Postgres

2. Create a Database resource in a YAML file

3. Apply the database_one.yaml manifest

4. Check for the changes in Postgres

©EDB 2024 — ALL RIGHTS RESERVED.

1. Delete the database resource

2. Check for the changes in Postgres

3. Edit the database manifest

4. Apply the database.yaml manifest

5. Check for the changes in Postgres again

$ kubectl delete -f database_one.yaml

$ kubectl cnpg psql cluster-example -- -c “\l”

$ cat <<EOF > database_one.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
 name: cluster-example-one
spec:
spec:
 databaseReclaimPolicy: retain
 name: one
 owner: app
 ensure: absent
 cluster:
 name: cluster-example
EOF

$ kubectl apply -f database_one.yaml

$ kubectl cnpg psql cluster-example -- -c “\l”

Declarative Databases

©EDB 2024 — ALL RIGHTS RESERVED.

How to manage PostgreSQL extensions?

©EDB 2024 — ALL RIGHTS RESERVED.

● Manages extensions in a declarative manner

● List of extensions in the Database manifest

● Uses PostgreSQL functions:
○ CREATE EXTENSION
○ DROP EXTENSION
○ ALTER EXTENSION (limited)

● Requires extensions to be available in the
PostgreSQL image
○ Single heavy PG image which contains

required extensions files

https://cloudnative-pg.io/docs/devel/declarative_databas
e_management#managing-extensions-in-a-database

Declarative Extensions

apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
 name: cluster-ext-app
spec:
 cluster:
 name: cluster-ext
 name: app
 owner: app
 extensions:
 - name: vector
 version: '0.8.1'

https://cloudnative-pg.io/docs/devel/declarative_database_management#managing-extensions-in-a-database
https://cloudnative-pg.io/docs/devel/declarative_database_management#managing-extensions-in-a-database

©EDB 2024 — ALL RIGHTS RESERVED.

$ cat <<EOF > cluster-ext.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: cluster-ext
spec:
 imageName:
 instances: 1
 storage:
 size: 1Gi
EOF

$ kubectl apply -f cluster-ext.yaml

$ kubectl cnpg psql cluster-ext -- app -c “\dx”

Declarative Extensions

1. Create a Cluster YAML manifest

2. Apply the cluster-ext.yaml manifest

3. Check for the current extensions in

Postgres

©EDB 2024 — ALL RIGHTS RESERVED.

$ cat <<EOF > cluster-ext_db-app.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
 name: cluster-ext-app
spec:
 name: app
 owner: app
 cluster:
 name: cluster-ext
 extensions:
 - name: vector
 ensure: present
EOF

$ kubectl apply -f cluster-ext_db-app.yaml

$ kubectl cnpg psql cluster-ext -- app -c “\dx”

Declarative Extensions

1. Create the cluster-ext_db-one.yaml

manifest

2. Apply the cluster-ext_db-one.yaml

manifest

3. Check for the changes in Postgres

©EDB 2024 — ALL RIGHTS RESERVED.

Image Volume Extensions apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
 name: cluster-example-app
spec:
 cluster:
 name: cluster-example-ext
 name: app
 owner: app
 extensions:
 - name: vector
 version: '0.8.1'

apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: cluster-example-ext
spec:
 imageName: ghcr.io/cloudnative-pg/postgresql:18-minimal-trixie
 instances: 1

 storage:
 size: 1Gi

 postgresql:
 extensions:
 - name: vector
 image:
 reference: ghcr.io/cloudnative-pg/pgvector:0.8.1-18-trixie

● Requires at least:
○ CNPG v1.27
○ PostgreSQL v18
○ Kubernetes v1.33

● Allows dynamically adding extensions as

dedicated OCI images

● Avoids heavy PostgreSQL image

● Decuple upgrades
○ PostgreSQL
○ Extensions

● Easier to maintain

https://cloudnative-pg.io/docs/devel/imagevolu
me_extensions

https://cloudnative-pg.io/docs/devel/imagevolume_extensions
https://cloudnative-pg.io/docs/devel/imagevolume_extensions

©EDB 2024 — ALL RIGHTS RESERVED.

$ cat <<EOF > cluster-postgis.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: postgis-example
spec:
 instances: 1
 imageName: ghcr.io/cloudnative-pg/postgis:18-3.6-system-trixie
 storage:
 size: 1Gi
 postgresql:
 parameters:
 log_statement: ddl
EOF

$ cat <<EOF > cluster-postgis_db-app.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
 name: postgis-example-app
spec:
 name: app
 owner: app
 cluster:
 name: postgis-example
 extensions:
 - name: postgis
 - name: postgis_topology
 - name: fuzzystrmatch
 - name: postgis_tiger_geocoder
EOF

PostGIS - Single Image

1. Select image:

● Different PostgreSQL image with

PostGIS included

2. Create a Cluster resource in a YAML file

3. Create a Database resource in a YAML file

https://cloudnative-pg.io/docs/devel/postgis/

https://cloudnative-pg.io/docs/devel/postgis/

©EDB 2024 — ALL RIGHTS RESERVED.

$ kubectl apply -f cluster-postgis.yaml

$ kubectl apply -f cluster-postgis_db-app.yaml

$ kubectl cnpg psql postgis-example -- app -c “\dx”

PostGIS - Single Image

1. Apply the cluster-postgis.yaml

manifest for the cluster

2. Apply the

cluster-postgis_db-app.yaml

manifest for the database

3. Check for the changes in Postgres

©EDB 2024 — ALL RIGHTS RESERVED.

$ cat <<EOF > cluster-postgis-ive.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: cluster-postgis-ive
spec:
 imageName:
ghcr.io/cloudnative-pg/postgresql:18-minimal-trixie
 instances: 1

 storage:
 size: 1Gi

 postgresql:
 extensions:
 - name: postgis
 image:
 reference:
ghcr.io/cloudnative-pg/postgis-extension:3.6.1-18-trixie
 ld_library_path:
 - system
EOF

$ kubectl apply -f cluster-ive.yaml

PostGIS - Image Volume Extension

1. Select images:

● PostgreSQL minimal image

● PostGIS as Image Volume Extension

2. Create a Cluster resource in a YAML file

3. Apply the cluster-postgis-ive.yaml

manifest

https://github.com/cloudnative-pg/postgres-exten
sions-containers/

https://github.com/cloudnative-pg/postgres-extensions-containers/
https://github.com/cloudnative-pg/postgres-extensions-containers/

©EDB 2024 — ALL RIGHTS RESERVED.

$ cat <<EOF > cluster-ive_db-app.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
 name: postgis-ive-app
spec:
 name: app
 owner: app
 cluster:
 name: cluster-postgis-ive
 extensions:
 - name: postgis
 version: '3.6.1'
 - name: postgis_raster
 - name: postgis_sfcgal
 - name: fuzzystrmatch
 - name: address_standardizer
 - name: address_standardizer_data_us
 - name: postgis_tiger_geocoder
 - name: postgis_topology
EOF

$ kubectl apply -f postgis-ive_db-app.yaml

PostGIS - Image Volume Extension

1. Create a Database resource in a YAML file

2. Apply the postgis-ive_db-app

manifest for the database

3. Check for the changes in Postgres

©EDB 2024 — ALL RIGHTS RESERVED.

How to manage PostgreSQL settings?

©EDB 2024 — ALL RIGHTS RESERVED.

PostgreSQL Setting
$ cat <<EOF > ./setting-example.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: setting-example
spec:
 instances: 3
 storage:
 size: 1Gi

 postgresql:
 parameters:
 shared_buffers: 128MB
EOF

$ kubectl apply -f setting-example.yaml

1. create a 3 instance cluster

2. Apply the manifest

https://cloudnative-pg.io/docs/1.28/postgresql_
conf#the-postgresql-section

https://cloudnative-pg.io/docs/1.28/postgresql_conf#the-postgresql-section
https://cloudnative-pg.io/docs/1.28/postgresql_conf#the-postgresql-section

©EDB 2024 — ALL RIGHTS RESERVED.

PostgreSQL Setting
$ kubectl get cluster setting-example -o yaml |grep
-A25 parameters:

$ kubectl exec -it setting-example-1 -c postgres --
psql -c "show shared_buffers;"

$ sed -i 's/128MB/256MB/' setting-example.yaml

$ cat setting-example.yaml

$ kubectl apply -f setting-example.yaml

$ kubectl get cluster setting-example -o yaml |grep
-A25 parameters:

$ kubectl exec -it setting-example-1 -c postgres --
psql -c "show shared_buffers;"

1. Check the current value of shared_buffers

in the cluster yaml

2. Check the current value in postgres

3. Add the desired value using cluster

Manifest

4. watch the cluster pods/status parallely

5. verify the desired value in the cluster yaml

6. Check the desired value in postgres

©EDB 2024 — ALL RIGHTS RESERVED.

How to import a PostgreSQL databases?

©EDB 2024 — ALL RIGHTS RESERVED.

$ kubectl cnpg psql setting-example -- app

app=# CREATE TABLE users (
 id SERIAL PRIMARY KEY,
 username VARCHAR(50) NOT NULL,
 email VARCHAR(100) NOT NULL,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

INSERT INTO users (username, email) VALUES
 ('john_doe', 'john@example.com'),
 ('jane_smith', 'jane@example.com'),
 ('bob_jones', 'bob@example.com');

-- Verify the data
SELECT * FROM users;

$ kubectl patch cluster setting-example --type merge -p
'{"spec":{"enableSuperuserAccess":true}}'

Import database

1. Create a table and insert data in source

cluster in app db.

2. Enable super user in source cluster

https://cloudnative-pg.io/docs/1.28/database_i
mport#the-microservice-type

https://cloudnative-pg.io/docs/1.28/database_import#the-microservice-type
https://cloudnative-pg.io/docs/1.28/database_import#the-microservice-type

©EDB 2024 — ALL RIGHTS RESERVED.

$ cat <<EOF > ./import.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: cluster-import-microservice
spec:
 instances: 1
 bootstrap:
 initdb:
 import:
 type: microservice
 databases:
 - app
 source:
 externalCluster: setting-example
 storage:
 size: 1Gi
 externalClusters:
 - name: setting-example
 connectionParameters:
 host: setting-example-rw.default.svc.cluster.local
 user: postgres
 dbname: postgres
 password:
 name: setting-example-superuser
 key: password
EOF

Import database

1. Configure the yaml for import using app db

©EDB 2024 — ALL RIGHTS RESERVED.

$ kubectl apply -f import.yaml

$ kubectl get pods -w

$ kubectl get cluster -w

$ kubectl cnpg psql cluster-import-microservice -- \
 app -c "SELECT * FROM users"

Import database

1. Apply the cluster manifest

2. Verify data.

©EDB 2024 — ALL RIGHTS RESERVED.

What happens during an incident?

©EDB 2024 — ALL RIGHTS RESERVED.

Different approaches:

▪ Pod deletion:

● Delete of the PostgreSQL’s primary Pod

▪ PVC deletion:

● Delete the PVC associated to PostgreSQL’s primary Pod

▪ Node deletion (not covered in this course):

● Turn off or detach the Kubernetes node where the PostgreSQL’s primary Pod is running

https://cloudnative-pg.io/docs/devel/failure_modes/

Incident Simulation

https://cloudnative-pg.io/docs/devel/failure_modes/

©EDB 2024 — ALL RIGHTS RESERVED.

$ kubectl get cluster setting-example

$ kubectl get cluster setting-example -w

#Replace Primary pod no.
$ kubectl delete po setting-example-N

$ kubectl cnpg status setting-example

Failover

1. Check the cluster status and primary

2. Delete primary pod

3. Watch the cluster status

©EDB 2024 — ALL RIGHTS RESERVED.

$ kubectl get cluster setting-example

$ kubectl cluster status -w

$ kubectl get pod -w|grep "setting-example"

$ kubectl delete pvc,pod setting-example-N
$ # where N is the ID of the primary pod

$ kubectl cnpg status setting-example

Failover

1. Check the cluster status and primary

2. Delete primary pod and pvc

3. Watch the cluster pod

4. Watch the cluster status

©EDB 2024 — ALL RIGHTS RESERVED.

How to read the logs?

©EDB 2024 — ALL RIGHTS RESERVED.

$ kubectl get cluster setting-example -o yaml | grep
logLevel

$ kubectl cnpg report operator -n cnpg-system

$ kubectl logs deploy/cnpg-controller-manager -n \
 cnpg-system

$ kubectl logs setting-example-1

$ kubectl cnpg logs cluster setting-example |\
 kubectl cnpg logs pretty

Logs

1. Cluster logs

2. Operator logs

3. Postgres logs

https://cloudnative-pg.io/docs/1.28/kubectl-p
lugin#logs

©EDB 2024 — ALL RIGHTS RESERVED.

How to manage CNPG upgrades?

©EDB 2024 — ALL RIGHTS RESERVED.

Three methods:

1. Automatic (default)
● Automatic switchover or restart of the

PostgreSQL’s primary Pod
2. Semi-automatic

● Automatic restart of the PostgreSQL’s
replica Pod(s)

● Manual switchover or restart of the
PostgreSQL’s primary Pod

3. In-place binary replacement
● Breaks immutability concept
● Controlled by Operator’s Configuration

CNPG Operator Rolling Updates (default)
Two phases:

1. Operator’s upgrade

● Operator’s container image

● Custom Resource Definition upgrade

2. Instance Manager upgrade

● Within the PostgreSQL instance Pod

https://cloudnative-pg.io/docs/devel/installation_upgrade/#upgrades

https://cloudnative-pg.io/docs/devel/installation_upgrade/#upgrades

©EDB 2024 — ALL RIGHTS RESERVED.

CNPG Operator’s Upgrade

Current version running: CNPG v1.27.2

1. Monitor resources from two different terminals

● One for cnpg-system namespace

● One for the cluster namespace (default)

2. Install the new CNPG version: v1.28.0

$ kubectl get pods -n cnpg-system -w

$ kubectl get pods -w

$ kubectl apply --server-side -f \

https://raw.githubusercontent.com/cloudnative-pg/cloudn
ative-pg/release-1.28/releases/cnpg-1.28.0.yaml

©EDB 2024 — ALL RIGHTS RESERVED.

How to manage PostgreSQL upgrades?

©EDB 2024 — ALL RIGHTS RESERVED.

PostgreSQL Rolling Updates

Tow contexts:

1. Minor Version upgrades:

● Managed as a Rolling Updates

like the Operator’s upgrade

● Simple PostgreSQL’s container image

replacement

2. MAJOR Version upgrades:

● More complex operation

● Different methods

https://cloudnative-pg.io/docs/devel/postgres_upgrades/

Major Upgrade’s methods:

1. Offline

● Logical dump/restore from one instance

to another - duplicate resources’

consumption

● In-place upgrade - data directory

replacement (pg_upgrade --link)

2. Online

● PostgreSQL’s native Logical Replication

from one instance to another - duplicate

resources’ consumption

https://cloudnative-pg.io/docs/devel/postgres_upgrades/

©EDB 2024 — ALL RIGHTS RESERVED.

1. Having a 3 PostgreSQL instance cluster at

version 17

2. Monitor resources from a separate terminal

3. Apply the manifest and wait for the cluster to be

ready

Minor Version Upgrade

$ cat <<EOF > ./cluster-upgrade.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: cluster-upgrade
spec:
 imageName: ghcr.io/cloudnative-pg/postgresql:17.0
 instances: 3
 storage:
 size: 1Gi
EOF

$ kubectl get pods -w

$ kubectl apply -f ./cluster-upgrade.yaml

©EDB 2024 — ALL RIGHTS RESERVED.

1. Change the PostgreSQL image TAG from 17.0

to 17.2 in the YAML manifest

2. Apply the cluster-upgrade.yaml manifest

and verify the cluster status with the CNPG

plugin

3. Repeat the plugin’s status command a few

times

Minor Version Upgrade

$ sed -i 's/17\.0/17\.2/' cluster-upgrade.yaml

$ # Verify the changes
$ cat ./cluster-upgrade.yaml

$ kubectl apply -f ./cluster-upgrade.yaml \
 && kubectl cnpg status cluster-upgrade

$ kubectl cnpg status cluster-upgrade

©EDB 2024 — ALL RIGHTS RESERVED.

1. Using the cluster created in the previous

exercise at version 17.2

2. Monitor resources from a separate terminal

3. Change the PostgreSQL image TAG from 17.2

to 18.0 in the YAML manifest

4. Apply the cluster-upgrade.yaml manifest

and verify the cluster status with the CNPG

plugin

5. Repeat the plugin’s status command a few

times

$ kubectl get pods -w

$ sed -i 's/17\.2/18\.0/' cluster-upgrade.yaml

$ # Verify the changes
$ cat ./cluster-upgrade.yaml

$ kubectl apply -f ./cluster-upgrade.yaml \
 && kubectl cnpg status cluster-upgrade

$ kubectl cnpg status cluster-upgrade

MAJOR Version Upgrade

©EDB 2024 — ALL RIGHTS RESERVED.

How to take a backup?

©EDB 2024 — ALL RIGHTS RESERVED.

Methods:

▪ barmanObjectStore (legacy)

● Uses the in-core Barman Cloud included in PostgreSQL images to take backups

● Deprecated

▪ volumeSnapshots

● Uses Kubernetes native API to take snapshots of the volumes, when supported by CSI

● Fastest to take

● Still requires WAL archiving to achieve PITR

▪ plugins

● Uses external CNPG-I plugins (es: Plugin Barman Cloud)

https://cloudnative-pg.io/docs/devel/backup/

CNPG Cluster Backup

https://cloudnative-pg.io/docs/devel/backup/

©EDB 2024 — ALL RIGHTS RESERVED.

How it works:
▪ From CNPG v1.26.0

▪ Integration with CNPG Cluster

● Container Sidecar

▪ New CRD

● ObjectStore

▪ Backups and WAL files

● tags

● extra barman options

Features:
▪ Hot (online) backups

● Compression, Encryption, Parallelism

▪ Continuous WAL archiving
● Object Stores
● Compression, Encryption, Parallelism

▪ Retention Policies

▪ Data Restore
● Full Recovery
● Point In Time Recovery

CNPG-I Plugin Barman Cloud

https://cloudnative-pg.io/plugin-barman-cloud/docs/intro/

https://cloudnative-pg.io/plugin-barman-cloud/docs/intro/

©EDB 2024 — ALL RIGHTS RESERVED.

1. Deploy the Plugin Barman Cloud

2. Wait for the deployment to be ready

3. From the cnpg-playground repo, deploy the

ObjectStore manifest for EU minio

4. Check for the ObjectStore resource

Deploy Barman Cloud

$ kubectl apply -f
https://github.com/cloudnative-pg/plugin-barman-cloud/r
eleases/download/v0.10.0/manifest.yaml

$ kubectl rollout status deployment \
 -n cnpg-system barman-cloud

$ kubectl apply -f \
 demo/yaml/object-stores/minio-eu.yaml

$ kubectl get objectstore

©EDB 2024 — ALL RIGHTS RESERVED.

1. Create a cluster YAML file with the backup

configuration

2. Monitor resources in a separate terminal

3. Apply the manifest

4. Check for the cluster

● Use the CNPG plugin status command

● Use the kubectl get command to

check for the sidecar container

Deploy CNPG Cluster $ cat <<EOF > ./cluster-with-backup.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: cluster-with-backup
spec:
 instances: 2
 storage:
 size: 1Gi

 plugins:
 - name: barman-cloud.cloudnative-pg.io
 isWALArchiver: true
 parameters:
 barmanObjectName: minio-eu
 serverName: cluster-wit-backup
EOF

$ kubectl apply -f cluster-with-backup.yaml

$ kubectl cnpg status cluster-with-backup

$ kubectl get pod cluster-with-backup

©EDB 2024 — ALL RIGHTS RESERVED.

First CNPG Backup $ kubectl cnpg psql cluster-with-backup -- app

app=# CREATE TABLE numbers(x int);

app=# INSERT INTO numbers (SELECT
generate_series(1,1000000));

app=# \q

$ cat <<EOF > backup.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Backup
metadata:
 name: backup-example
spec:
 method: plugin
 cluster:
 name: cluster-with-backup
 pluginConfiguration:
 name: barman-cloud.cloudnative-pg.io
EOF

1. Generate data inside the database

● Access to the app DB with the plugin

● Create the numbers table

● Insert 1.000.000 rows into the table

2. Create the a backup manifest

https://cloudnative-pg.io/docs/devel/backup/#examp
le-requesting-an-on-demand-backup

https://cloudnative-pg.io/docs/devel/backup/#example-requesting-an-on-demand-backup
https://cloudnative-pg.io/docs/devel/backup/#example-requesting-an-on-demand-backup

©EDB 2024 — ALL RIGHTS RESERVED.

First CNPG Backup

$ kubectl apply -f backup.yaml

$ kubectl cnpg backup cluster-with-backup \
 --immediate-checkpoint true \
 --backup-target primary \
 --method plugin \
 --plugin-name barman-cloud.cloudnative-pg.io

$ kubectl get backup

$ kubectl get backup -o yaml

$ kubectl cnpg status cluster-with-backup

1. Create the first two backups

● Using the backup manifest

● Using the plugin’s backup command

2. Analyse the backup resources

3. Analyse the cluster status

● Check how the First Point of

Recoverability field has changed

©EDB 2024 — ALL RIGHTS RESERVED.

How to recover data from a backup?

©EDB 2024 — ALL RIGHTS RESERVED.

Methods:

▪ barmanObjectStore

▪ volumeSnapshots

▪ plugin

CNPG Cluster Recovery

https://cloudnative-pg.io/docs/devel/recovery/

CloudNativePG recovery must know:

▪ Cannot recover a Cluster in-place

▪ It’s a Bootstrap method for a different Cluster

▪ WAL archiving must be redirected to a different

object store path (hence the new Cluster name)

● to prevent WAL files conflicts

(overwriting original ones)

https://cloudnative-pg.io/docs/devel/recovery/

©EDB 2024 — ALL RIGHTS RESERVED.

1. Create a manifest with:

a. the recovery method for the

bootstrap section that points to the

right externalClusters

b. the externalClusters section pointing

to the right barmanObjectName and

serverName.

$ cat <<EOF > ./cluster-recovery.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
 name: cluster-recovery
spec:
 instances: 1
 storage:
 size: 1Gi

 bootstrap:
 recovery:
 source: origin

 externalClusters:
 - name: origin
 plugin:
 name: barman-cloud.cloudnative-pg.io
 parameters:
 barmanObjectName: minio-eu
 serverName: cluster-with-backup
EOF

CNPG Cluster Recovery

©EDB 2024 — ALL RIGHTS RESERVED.

1. Monitor resources in a separate terminal

2. Apply the cluster-recovery manifest

3. Check for the cluster status

4. Verify the data in the app DB

CNPG Recovery

$ kubectl get pods -w

$ kubectl apply -f ./cluster-recovery.yaml

$ kubectl cnpg status cluster-recovery

$ kubectl cnpg psql cluster-recovery -- app \
 -c “SELECT COUNT(*) numbers”

©EDB 2024 — ALL RIGHTS RESERVED.

Questions?

©EDB 2024 — ALL RIGHTS RESERVED.

Thank you!

Let’s keep in touch!

Website: cloudnative-pg.io

Blog: cloudnative-pg.io/blog/

GitHub Discussions: github.com/cloudnative-pg/cloudnative-pg/discussions

Slack: communityinviter.com/apps/cloud-native/cncf

LinkedIn: linkedin.com/company/cloudnative-pg/

Mastodon: @CloudNativePG@mastodon.social

Bluesky: @CloudNativePG.bsky.social

http://cloudnative-pg.io
http://cloudnative-pg.io/blog/
https://github.com/cloudnative-pg/cloudnative-pg/discussions
http://github.com/cloudnative-pg/cloudnative-pg/discussions
http://github.com/cloudnative-pg/cloudnative-pg/discussions
http://communityinviter.com/apps/cloud-native/cncf
http://linkedin.com/company/cloudnative-pg/
https://mastodon.social/@CloudNativePG
https://bsky.app/profile/cloudnativepg.bsky.social

