EDB

{ ) POSTGRES /I

PostgreSQL on Kubernetes
with CloudNativePG (CNPG)

Danish Khan
Neel Patel



Danish Khan

DoKC Ambassador

SDE at EDB
CloudNativePG Contributor




Neel Patel

Principal Software Engineer at EDB




Agenda

Introduction to CloudNativePG (CNPG)
Installation of the kubectl plugin for CNPG
First deployment of a CNPG cluster
PostgreSQL configuration, databases and roles
management

PostgreSQL Extensions

Database import

Incident simulation (failover showcase)

Log reading

Upgrade of the Operator and the PostgreSQL
version (minor, and major)

Setup and execution of the first backup
Restore from a backup

©EDB 2024 — ALL RIGHTS RESERVED.



Useful Contents

To speed up the process and let you follow the workshop seamlessly:

= LINKS.md

e contains the list of links mentioned during the course

= COMMANDS.md

e contains the list of commands in the order of appearance in this course

N

©EDB 2024 — ALL RIGHTS RESERVED.



S # For Linux users
S; I S sudo sysctl \

et u p e nVI ro n m e nt fs.inotify.max_user_watches=524288 \
fs.inotify.max_user_instances=512

cnpg-playground Requirements:

S cd cnpg-playground

= Docker
S # Edit the ./k8s/kind-cluster.yaml

Kind S # Add the following configuration
kubectl kind: Cluster

CNPG Plugin apiVersion: kind.x-k8s.io/v1alpha4

grt name: cnpg
featureGates:

Then: ImageVolume: true

= Set limits with sysct1 (linux) $ ./scripts/setup.sh eu
Exec setup.sh script
Export of the Kube config
Set EU context
Creare gli alias $ kubectl config use-context kind-k8s-eu

Test the connection

S export
KUBECONFIG=<path-to>/cnpg-playground/k8s/kube-config.yaml

S . <path-to>/bash_aliases.sh
https://qithub.com/cloudnative-

S kubectl get pods -A
$ keu get pods -A



https://github.com/cloudnative-pg/cnpg-playground/

CloudNativePG

A CNCF Sandbox Operator
Manages the whole lifecycle of a
PostgreSQL cluster

Declarative Configuration

Runs on many Kubernetes distribution:
Vanilla

OpenShift

Cloud Service Providers K8S env

kind

https://cloudnative-pd.io/
https://aithub.com/cloudnative-pg/cloudnative-pg

CSO


https://cloudnative-pg.io/
https://github.com/cloudnative-pg/cloudnative-pg

How does it work?

1N 0 * ) .
s Manages Operands Minimum required* YAML definition:

e PostgreSQL container images

m Extends Kubernetes with:

e Controllers : postgresql.cnpg.io/vl

: Cluster
m Takes advantage of the Kubernetes API :
to reconcile the PostgreSQL cluster state : cluster-example
e Custom Resource Definitions
Backups
Clusters
ImageCatalogs o -

Poolers
Databases

* Convention over configuration paradigm:

https://cloudnative-pg.io/docs/devel/ all the other parameters are set by default.



https://cloudnative-pg.io/docs/devel/

CloudNativePG - Main Features

m High Availability and Self-Healing

m Support for local PVCs

m Managed services for rw and ro workloads
m Continuous backup (including snapshots)
= Point In Time Recovery (incl. snapshots)

m Scale up/down of read-only replicas

m “Security by default’, including mTLS

m Native Prometheus exporter

m Logging to stdout in JSON format

= Rolling updates, incl. minor Postgres releases

Synchronous replication

Online import of Postgres databases
Separate volume for WALSs

Postgres tablespaces, including temporary
Replica clusters and distributed topologies
Declarative role management

Declarative hibernation and fencing
CNPG-I - interface to develop CNPG plugins
Connection pooling

Postgres extensions (pgvector, PostGIS, ...)


https://cloudnative-pg.io/docs/devel/#main-features

CloudNativePG - Latest Release: 1.28

https://cloudnative-pg.io/docs/1.28/release notes/v1.28

m Features m Changes


https://cloudnative-pg.io/docs/1.28/release_notes/v1.28

How to install it?




Using the manifest

1. Install the CNPG Operator v1.27.2

2. Check for resources

e Analyse the resources created
m Deployment

= Pod S kubectl apply --server-side -f
https://raw.githubusercontent.com/cloudnative-pg/cloudn
ative-pg/release-1.27/releases/cnpg-1.27.2.yaml

S kubectl get deployments,pods -n cnpg-system

https://cloudnative-pg.io/docs/devel/installation



https://cloudnative-pg.io/docs/devel/installation_upgrade
https://cloudnative-pg.io/docs/devel/installation_upgrade

Using the CNPG Plugin

1. Install the kubectl plugin for CNPG

$ curl -sSfL
https://github.com/cloudnative-pg/cloudnative-pg/raw/ma
e --help in/hack/install-cnpg-plugin.sh | \

2. Familiarize yourself with its commands:

' do sh -s -- -b /usr/local/bi
3. Check the install command sudo sh =s usr/local/bin

S kubectl cnpg --help

S kubectl cnpg install generate \
--control-plane \
--version 1.27.2 \
| kubectl apply -f - --server-side

.io/docs/devel/kubectl-



https://cloudnative-pg.io/docs/devel/kubectl-plugin/

Deploy the first Cluster

§ cat <<EOF > ./cluster-example.yaml

. Create a YAML file with the basic CNPG apiVersion: postgresql.cnpg.io/vi
kind: Cluster

cluster definition metadata:

. . . name: cluster-example
. Open a new terminal window to monitor g

spec:
resources instances: 3
storage:
. Apply the cluster manifest size: 1Gi
EOF

. Check for the created resources:
o pods
o services

S kubectl get pods -w
O pvc S kubectl apply -f cluster-example.yaml
S kubectl get clusters, pods, pvc, svc, ep

https://cloudnative-pg.io/docs/devel/quickstart/ $ kubectl cnpg status cluster-example
#part-3-deploy-a-postgresql-cluster

SO



https://cloudnative-pg.io/docs/devel/quickstart/#part-3-deploy-a-postgresql-cluster
https://cloudnative-pg.io/docs/devel/quickstart/#part-3-deploy-a-postgresql-cluster

CNPG Cluster Architecture

k8s-eu

Postgres node

PRIMARY
\

PGDATA PVC

Postgres node

/
/

Postgres node

‘—__-—.—-_._.
-,

" -
. -
-
_-1=i1Tp STANDBY
\
. \
\
I \
. PGDATA PVC \ .
| Vs
. \
7\
' LS \

N.«

STANDBY

PGDATA PVC

©EDB 2024 — ALL RIGHTS RESERVED.



How to manage PostgreSQL roles?




Declarative Roles

[..snipped..]
_ . managedRolesStatus:
Defines roles in a declarative manner byStatus:
Manages full lifecycle of Roles hot-managed:
- app

Uses PostgreSQL functions:
o CREATE ROLE

pending-reconciliation:

- dante
o ALTER ROLE - petrarca
Requires human intervention in case of errors reconciled:
Passwords: - ariosto
reserved:
o Uses secrets reference for passwords - postgres
= plain text - streaming_replica
= md5 or scram (not usable by apps) cannotReconcile:
o Empty password = no password dante:

- 'could not perform DELETE on role dante: owner

o Certificates are preferable

of database inferno'’

petrarca:

- 'could not perform UPDATE_MEMBERSHIPS on role
petrarca: role "poets" does not exist'

https://cloudnative-pg.io/docs/devel/declarative
role_management

SO



https://cloudnative-pg.io/docs/devel/declarative_role_management
https://cloudnative-pg.io/docs/devel/declarative_role_management

DeC|arative ROleS S kubectl cnpg psql cluster-example -- app -c “\duS+”

S # Edit cluster-example.yaml and add the following:

. Check the current roles in Postgres apiVersion: postgresql.cnpg.io/v1
) ) kind: Cluster

Edit the cluster manifest spec:

. Add the roles you want ..
managed:
. Apply the cluster-example.yaml roles:
. - name: dante
manlfeSt ensure: present

comment: Dante Alighieri

. Check the presence of wanted roles in

login: true
Postgres superuser: false
inRoles:

- pg_monitor

- pg_signal_backend

S kubectl apply -f cluster-example.yaml

S kubectl cnpg psql cluster-example -- app -c “\duS+”




Declarative Roles

1. Manually change the role in Postgres

2. Check for the role changes
S kubectl cnpg psql cluster-example -- app \

3. Trigger a reconciliation loop " “ALTER ROLE dante NOLOGIN”

4. Check the role
S kubectl cnpg psql cluster-example -- app -c “\duS+

dante”
S kubectl cnpg reload cluster-example

S kubectl cnpg psql cluster-example -- app -c “\duS+
dante”




How to manage PostgreSQL databases?




Declarative Databases

Defines databases in a declarative manner apiVersion: postgresql.cnpg.io/vi

Separate Custom Resource Definition (CRD) kind: Database

. . metadata:
Manages a database with optionals:

o extensions name: cluster-example-one
o schema spec:
o FDW spec:

Two different database deletion methods: databaseReclaimPolicy: delete

o Deleting the Database CRD with cluster:
databaseReclaimPolicy:

= retain name: one
» delete owner: app

o Declaratively with ensure: absent status:
observedGeneration: 1

generation: 1

name: cluster-example

applied: true

https://cloudnative-pqg.io/docs/devel/declarative
database_management
CSNOD



https://cloudnative-pg.io/docs/devel/declarative_database_management
https://cloudnative-pg.io/docs/devel/declarative_database_management

DeClarative Databases $ kubectl cnpg psql cluster-example -- -c “\1”

] S # Create a new Database manifest:
. Check for the current databases in

Postgres § cat <<EOF > database_one.yaml

apiVersion: postgresqgl.cnpg.io/vT
. Create a Database resource in a YAML file kind: Database

metadata:

. Apply the database_one.yaml manifest

name: cluster-example-one
. Check for the changes in Postgres spec:
spec:
databaseReclaimPolicy: retain
name: one
owner: app
cluster:
name: cluster-example
EOF

S kubectl apply -f database_one.yaml

S kubectl cnpg psql cluster-example -- -c “\1”




DeC|arative Databases S kubectl delete -f database_one.yaml

S kubectl cnpg psql cluster-example -- -c “\1”

Delete the database resource
S cat <<EOF > database_one.yaml

. Check for the changes in Postgres apiVersion: postgresql.cnpg.io/v1
kind: Database

Edit the database manifest

metadata:

. Apply the database .yaml manifest name: cluster-example-one
spec:
. Check for the changes in Postgres again SEeC;
databaseReclaimPolicy: retain
name: one
owner: app
ensure: absent
cluster:
name: cluster-example
EOF

S kubectl apply -f database_one.yaml

S kubectl cnpg psql cluster-example -- -c “\1”




How to manage PostgreSQL extensions?




C

Declarative Extensions

Manages extensions in a declarative manner
List of extensions in the Database manifest

Uses PostgreSQL functions:

o CREATE EXTENSION

o DROP EXTENSION

o ALTER EXTENSION (limited)

Requires extensions to be available in the
PostgreSQL image
o Single heavy PG image which contains
required extensions files

https://cloudnative-pg.io/docs/devel/declarative_databas
e_management#managing-extensions-in-a-database

B

apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
name: cluster-ext-app
spec:
cluster:
name: cluster-ext
name: app
owner: app
extensions:
- name: vector
version: '0.8.1'


https://cloudnative-pg.io/docs/devel/declarative_database_management#managing-extensions-in-a-database
https://cloudnative-pg.io/docs/devel/declarative_database_management#managing-extensions-in-a-database

Declarative Extensions

1. Create a Cluster YAML manifest § cat <<EOF > cluster-ext.yaml
apiVersion: postgresqgl.cnpg.io/vT
kind: Cluster

3. Check for the current extensions in metadata:
name: cluster-ext

2. Apply the cluster-ext.yaml manifest

Postgres ——

imageName:
instances: 1
storage:
size: 161
EOF

S kubectl apply -f cluster-ext.yaml

S kubectl cnpg psql cluster-ext -- app -c “\dx”




Declarative Extensions

. Createthe cluster-ext_db-one.yaml
manifest

. Apply the cluster-ext_db-one.yaml
manifest

. Check for the changes in Postgres

§ cat <<EOF > cluster-ext_db-app.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
name: cluster-ext-app
spec:
name: app
owner: app
cluster:
name: cluster-ext
extensions:
- name: vector
ensure. present
EOF

S kubectl apply -f cluster-ext_db-app.yaml

S kubectl cnpg psql cluster-ext -- app -c¢ “\dx”



apiVersion: postgresql.cnpg.io/v1
kind: Database

Image Volume Extensions

metadata:
name: cluster-example-app

. spec:
Requires at least: S
o CNPGv1.27 name: cluster-example-ext
o PostgreSQL v18 IEEs SRt
owner: app
o Kubernetes v1.33 extensions:

- hame: vector

Allows dynamically adding extensions as

version: '6.8.1'

dedicated OCI images

apiVersion: postgresql.cnpg.io/v1

Avoids heavy PostgreSQL image kind: Cluster
metadata:
Decup|e upgrades name: cluster-example-ext
spec:
© POStgreSQL imageName: ghcr.io/cloudnative-pg/postgresqgl:18-minimal-trixie
o Extensions instances: 1
Easier to maintain storage:
size: 1Gi
) . . . postgresql:
https://cloudnative-pg.io/docs/devel/imagevolu e
me_extensions - name: vector
image:

r ~ reference: ghcr.io/cloudnative-pg/pgvector:0.8.1-18-trixie



https://cloudnative-pg.io/docs/devel/imagevolume_extensions
https://cloudnative-pg.io/docs/devel/imagevolume_extensions

§ cat <<EOF > cluster-postgis.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster

metadata:

PostGIS - Single Image

name: postgis-example
spec:
instances: 1

1. Select image:

imageName: ghcr.io/cloudnative-pg/postgis:18-3.6-system-trixie

e Different PostgreSQL image with storage:
size: 1Gi
PostGIS included postgresql:
parameters:
2. Create a Cluster resource in a YAML file log_statement: ddl

EOF
3. Create a Database resource in a YAML file
S cat <<EOF > cluster-postgis_db-app.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Database
metadata:
name: postgis-example-app
spec:
name: app
owner: app
cluster:
name: postgis-example
extensions:
- name: postgis
https://cloudnative-pqg.io/docs/devel/ . - name: postgis_topology
- name: fuzzystrmatch
- name: postgis_tiger_geocoder



https://cloudnative-pg.io/docs/devel/postgis/

PostGIS - Single Image

. Apply the cluster-postgis.yaml
manifest for the cluster
. Apply the

C]‘USter_pOStng—db_app'yaml S kubectl apply -f cluster-postgis.yaml

manifest for the database
S kubectl apply -f cluster-postgis_db-app.yaml
. Check for the changes in Postgres

S kubectl cnpg psql postgis-example -- app -c “\dx”




POStGIS - image Volume Extension i iaitbttiitssiasitits

apiVersion: postgresqgl.cnpg.io/v1
kind: Cluster
metadata:

Select IMages: name: cluster-postgis-ive
e PostgreSQL minimal image spee:
imageName:
e PostGIS as |mage Volume Extension ghcr.io/cloudnative-pg/postgresql:18-minimal-trixie

instances: 1

2. Create a Cluster resource in a YAML file

) ) storage:
3. Apply the cluster-postgis-ive.yaml size: 16i
manifest .
postgresql:
extensions:

- name: postgis
image:
reference:
ghcr.io/cloudnative-pg/postgis-extension:3.6.1-18-trixie
ld_library_path:

. . - system
ithub.com/cloudnative-pg/postgres-exten EOF

sions-containers/
S kubectl apply -f cluster-ive.yaml

SO



https://github.com/cloudnative-pg/postgres-extensions-containers/
https://github.com/cloudnative-pg/postgres-extensions-containers/

P -tGIS _ , $ cat <<EOF > cluster-ive_db-app.yaml
OS Image VO'Ume EXtenSIOn apiVersion: postgresql.cnpg.io/v1
kind: Database
) metadata:
1. Create a Database resource in a YAML file hame: postgis-ive-app

2. Apply the postgis-ive_db-app Spec:

name: app

manifest for the database owner: app

. cluster:
3. Check for the changes in Postgres FIE8 G Eae
extensions:
- name: postgis
version: '3.6.1'
name: postgis_raster

name: postgis_sfcgal

name: fuzzystrmatch

name: address_standardizer

name: address_standardizer_data_us
name: postgis_tiger_geocoder

name: postgis_topology

~ S kubectl apply -f postgis-ive_db-app.yaml




How to manage PostgreSQL settings?




PostgreSQL Setting

1. create a 3 instance cluster

2. Apply the manifest

https://cloudnative-pqg.io/docs/1.28/

conf#the-postgresql-section
OO

§ cat <<EOF > ./setting-example.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:

nhame: setting-example
spec:

instances: 3

storage:

size: 161

postgresql:
parameters:
shared_buffers: 128MB
EOF

S kubectl apply -f setting-example.yaml


https://cloudnative-pg.io/docs/1.28/postgresql_conf#the-postgresql-section
https://cloudnative-pg.io/docs/1.28/postgresql_conf#the-postgresql-section

PostgreSQL Setting

S kubectl get cluster setting-example -o yaml |grep

. Check the current value of shared_buffers _A25 parameters:

in the cluster yaml|
S kubectl exec -it setting-example-1 -c postgres --
. Check the current value in postgres psql -c "show shared_buffers;"

. Add the desired value using Cluster S sed -i 's/128MB/256MB/' setting-example.yaml

Manifest
§ cat setting-example.yaml

. watch the cluster pods/status parallely

. . ) S kubectl apply -f setting-example.yaml
. verify the desired value in the cluster yam|

. Check the desired value in postgres S kubectl get cluster setting-example -o yaml |grep
-A25 parameters:

S kubectl exec -it setting-example-1 -c postgres --
psql -c "show shared_buffers;"




How to import a PostgreSQL databases?




Import database

S kubectl cnpg psql setting-example -- app

1. Create a table and insert data in source app=# CREATE TABLE users (

id SERIAL PRIMARY KEY,
username VARCHAR(50) NOT NULL,

2. Enable super user in source cluster email VARCHAR(168) NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

cluster in app db.

);

INSERT INTO users (username, email) VALUES
('john_doe', 'john@example.com'),
('jane_smith', 'jane@example.com'),
('bob_jones', 'bob@example.com');

-- Verify the data
SELECT * FROM users;

_ _ . S kubectl patch cluster setting-example --type merge -p
https://cloudnative-pg.io/docs/1.28/database_i ' {"spec” : {"enableSuperuserAccess” :true}}’

mport#the-microservice-type
CSNOD



https://cloudnative-pg.io/docs/1.28/database_import#the-microservice-type
https://cloudnative-pg.io/docs/1.28/database_import#the-microservice-type

C

Import database

1. Configure the yaml for import using app db

~

S cat <<EOF > ./import.yaml
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
name: cluster-import-microservice
spec:
instances: 1
bootstrap:
initdb:
import:
type: microservice
databases:
- app
source:
externalCluster: setting-example
storage:
size: 1G1
externalClusters:
- name: setting-example
connectionParameters:

host: setting-example-rw.default.svc.cluster.local

user: postgres
dbname: postgres
password:
name: setting-example-superuser
key: password




Import database

1. Apply the cluster manifest
2. Verify data.

kubectl apply -f import.yaml
kubectl get pods -w
kubectl get cluster -w

kubectl cnpg psql cluster-import-microservice -- \
app -c¢ "SELECT * FROM users”




What happens during an incident?




Incident Simulation

Different approaches:

= Pod deletion:

e Delete of the PostgreSQL's primary Pod
= PVC deletion:
e Delete the PVC associated to PostgreSQL's primary Pod

= Node deletion (not covered in this course):

e Turn off or detach the Kubernetes node where the PostgreSQL's primary Pod is running

https://cloudnative-pg.io/docs/devel/failure_modes/

4. ,! ©EDB 2024 — ALL RIGHTS RESERVED.



https://cloudnative-pg.io/docs/devel/failure_modes/

Failover

1. Check the cluster status and primary
2. Delete primary pod

3. Watch the cluster status .
S kubectl get cluster setting-example

S kubectl get cluster setting-example -w

#Replace Primary pod no.
$ kubectl delete po setting-example-N

S kubectl cnpg status setting-example




Failover

1. Check the cluster status and primary
2. Delete primary pod and pvc
3. Watch the cluster pod

4. Watch the cluster status

S kubectl

S kubectl

S kubectl

S kubectl
S # where

S kubectl

get cluster setting-example

cluster status -w

get pod -w|grep "setting-example”

delete pvc,pod setting-example-N
N is the ID of the primary pod

cnpg status setting-example



How to read the logs?




Logs

1. Cluster logs
2. Operator logs

3. Postgres logs

https://cloudnative-pg.io/docs/1.28/kubectl-p
lugin#logs

SO

S kubectl get cluster setting-example -o yaml | grep

logLevel

S kubectl cnpg

S kubectl logs
cnpg-system

S kubectl logs

S kubectl cnpg

kubectl cnpg

report operator -n cnpg-system

deploy/cnpg-controller-manager -n \

setting-example-1

logs cluster setting-example |\
logs pretty




How to manage CNPG upgrades?




C

CNPG Operator Rolling Updates (default)

Two phases: Three methods:
1. Operator’s upgrade 1. Automatic (default)
e Operator's container image e Automatic switchover or restart of the
PostgreSQL’s primary Pod

e Custom Resource Definition upgrade > Semi-automatic

e Automatic restart of the PostgreSQL's
e Within the PostgreSQL instance Pod replica Pod(s)
e Manual switchover or restart of the
PostgreSQL's primary Pod
3. In-place binary replacement
e Breaks immutability concept
e Controlled by Operator's Configuration

2. Instance Manager upgrade

https://cloudnative-pg.io/docs/devel/installation_upqgrade/#upgrades

O

©EDB 2024 — ALL RIGHTS RESERVED.


https://cloudnative-pg.io/docs/devel/installation_upgrade/#upgrades

CNPG Operator’s Upgrade

Current version running: CNPG v1.27.2

1. Monitor resources from two different terminals

e One for cnpg-system namespace
S kubectl get pods -n cnpg-system -w
e One for the cluster namespace (default)

2. Install the new CNPG version: v1.28.0 $ kubectl get pods -w

S kubectl apply --server-side -f \

https://raw.githubusercontent.com/cloudnative-pg/cloudn
ative-pg/release-1.28/releases/cnpg-1.28.0.yaml




How to manage PostgreSQL upgrades?




PostgreSQL Rolling Updates

Tow contexts:

1. Minor Version upgrades:

e Managed as a Rolling Updates
like the Operator’'s upgrade
e Simple PostgreSQL's container image

replacement

2. MAJOR Version upgrades:

® More complex operation

® Different methods

Major Upgrade’'s methods:
1. Offline

e Logical dump/restore from one instance
to another - duplicate resources’
consumption

e In-place upgrade - data directory
replacement (pg_upgrade --link)

2. Online

e PostgreSQL’s native Logical Replication
from one instance to another - duplicate

resources’ consumption

©EDB 2024 — ALL RIGHTS RESERVED.


https://cloudnative-pg.io/docs/devel/postgres_upgrades/

Minor Version Upgrade

Having a 3 PostgreSQL instance cluster at S et @Sl B . JEUSEEr-UEFErE i

version 17 apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
. Apply the manifest and wait for the cluster to be name: cluster-upgrade
spec:
imageName: ghcr.io/cloudnative-pg/postgresql:17.0

Monitor resources from a separate terminal

ready

instances: 3
storage:
size: 161
=0]3

S kubectl get pods -w

S kubectl apply -f ./cluster-upgrade.yaml




Minor Version Upgrade

. Change the PostgreSQL image TAG from 17.0
to 17.2 in the YAML manifest

) Applythe 01USter_upgrade'yam1 manifest S sed -i 's/17\.08/17\.2/' cluster-upgrade.yaml

and verify the cluster status with the CNPG
luai S # Verify the changes
piugin S cat ./cluster-upgrade.yaml

. Repeat the plugin's status command a few

S kubectl apply -f ./cluster-upgrade.yaml \

times && kubectl cnpg status cluster-upgrade

S kubectl cnpg status cluster-upgrade




MAJOR Version Upgrade

. Using the cluster created in the previous

exercise at version 1/7.2
S kubectl get pods -w

. Monitor resources from a separate terminal

. Change the PostgreSQL image TAG from 17.2 $ sed -i 's/17\.2/18\.8/' cluster-upgrade.yaml
to 18.0 in the YAML manifest $ # Verify the changes

. Apply the cluster-upgrade.yaml manifest $ cat ./cluster-upgrade.yaml

and verify the cluster status with the CNPG 5 fulbesil, appily —F . felnsier—umarede . el |

pthH1 && kubectl cnpg status cluster-upgrade

. R he plugin’s status command a few
epeat the plug S kubectl cnpg status cluster-upgrade

times




How to take a backup?




CNPG Cluster Backup

Methods:
= barmanObjectStore (legacy)

e Uses the in-core Barman Cloud included in PostgreSQL images to take backups

e Deprecated
= volumeSnapshots

e Uses Kubernetes native API to take snapshots of the volumes, when supported by CSI
e Fastest to take

e Still requires WAL archiving to achieve PITR
= plugins

e Uses external CNPG-I plugins (es: Plugin Barman Cloud)

https://cloudnative-pg.io/docs/devel/backup/

Q'

©EDB 2024 — ALL RIGHTS RESERVED.


https://cloudnative-pg.io/docs/devel/backup/

CNPG-I Plugin Barman Cloud

Features: How it works:

= Hot (online) backups = From CNPG v1.26.0

e Compression, Encryption, Parallelism = Integration with CNPG Cluster

= Continuous WAL archiving

Container Sidecar
e Object Stores *

e Compression, Encryption, Parallelism = New CRD

= Retention Policies e ObjectStore

= Data Restore = Backups and WAL files
e Full Recovery e tags

e Point In Time Recovery e extra barman options

https://cloudnative-pg.io/plugin-barman-cloud/docs/intro/

d{ N Rb ©EDB 2024 — ALL RIGHTS RESERVED.


https://cloudnative-pg.io/plugin-barman-cloud/docs/intro/

Deploy Barman Cloud

Deploy the Plugin Barman Cloud
. Wait for the deployment to be ready
S kubectl apply -f

From the cnpg-playground repo, deploy the https://github.com/cloudnative-pg/plugin-barman-cloud/r

) ) .. eleases/download/v0.10.0/manifest.yaml
ObjectStore manifest for EU minio

. Check for the ObjectStore resource S kubectl rollout status deployment \
-n cnpg-system barman-cloud

S kubectl apply -f \
demo/yaml/object-stores/minio-eu.yaml

S kubectl get objectstore




§ cat <<EOF > ./cluster-with-backup.yaml

Deploy CN PG C|USter apiVersion: postgresqgl.cnpg.io/vT

kind: Cluster
metadata:

. Create a cluster YAML file with the backup

name: cluster-with-backup

configuration spec.
instances: 2
Monitor resources in a separate terminal storage:
. size: 1G1
. Apply the manifest
. Check for the cluster plugins:
- name: barman-cloud.cloudnative-pg.io
e Usethe CNPG plugin status command e rm
parameters:

e Usethe kubectl get command to
barmanObjectName: minio-eu

CheCk fOI’ the S|decar container serverName: cluster-wit-backup
EOF
S kubectl apply -f cluster-with-backup.yaml

S kubectl cnpg status cluster-with-backup

S kubectl get pod cluster-with-backup




FirSt CNPG BaCkup § kubectl cnpg psql cluster-with-backup -- app

o app=# CREATE TABLE numbers(x int);
1. Generate data inside the database
app=# INSERT INTO numbers (SELECT

e Access to the app DB with the plugin
generate_series(1,1000000)) ;

e C(Create the numbers table

e Insert 1.000.000 rows into the table app=# \q

2. Create the a backup manifest $ cat <<EOF > backup.yaml

apiVersion: postgresqgl.cnpg.io/vT
kind: Backup
metadata:

name: backup-example
spec:

method: plugin

cluster:

name: cluster-with-backup

i luginConfiguration:
.io/docs/devel/backu pLug 9

le-requesting-an-on-demand-backup

name: barman-cloud.cloudnative-pg.io
EOF

SO



https://cloudnative-pg.io/docs/devel/backup/#example-requesting-an-on-demand-backup
https://cloudnative-pg.io/docs/devel/backup/#example-requesting-an-on-demand-backup

First CNPG Backup

1. Create the first two backups

e Using the backup manifest

e Using the plugin's backup command
2. Analyse the backup resources
3. Analyse the cluster status

e Checkhowthe First Point of

Recoverability field has changed

kubectl apply -f backup.yaml

kubectl cnpg backup cluster-with-backup \
--immediate-checkpoint true \
--backup-target primary \

--method plugin \

--plugin-name barman-cloud.cloudnative-pg.io
kubectl get backup

kubectl get backup -o yaml

kubectl cnpg status cluster-with-backup



How to recover data from a backup?




CNPG Cluster Recovery

Methods: CloudNativePG recovery must know:
= barmanObjectStore = Cannot recover a Cluster in-place
= volumeSnapshots = It's a Bootstrap method for a different Cluster

- plugin = WAL archiving must be redirected to a different
object store path (hence the new Cluster name)
e to prevent WAL files conflicts

(overwriting original ones)

https://cloudnative-pg.io/docs/devel/recovery/

d{ ‘ Rb ©EDB 2024 — ALL RIGHTS RESERVED.


https://cloudnative-pg.io/docs/devel/recovery/

CN PG Cluster Recovery § cat <<EOF > ./cluster-recovery.yaml

apiVersion: postgresql.cnpg.io/v1
kind: Cluster

1. Create a manifest with: metadata:
name : cluster—recovery
a. the recovery method for the spec:

bootstrap section that points to the lnstances: 1

_ storage:

right externalClusters size: 1Gi

the externalClusters section pointing

] ) bootstrap:

to the right barmanObjectName and e

serverName. source: origin
externalClusters:

- name: origin
plugin:
name: barman-cloud.cloudnative-pg.io
parameters:
barmanObjectName: minio-eu
serverName: cluster-with-backup
EOF




CNPG Recovery

1. Monitor resources in a separate terminal
2. Apply the cluster-recovery manifest
3. Check for the cluster status
4. Verify the data in the app DB

kubectl get pods -w
kubectl apply -f ./cluster-recovery.yaml
kubectl cnpg status cluster-recovery

kubectl cnpg psql cluster-recovery -- app \
-c “SELECT COUNT(*) numbers”



Questions?




Thank you!

Let's keep in touch!

Website: cloudnative-pg.io

Blog: cloudnative-pg.io/blog/

GitHub Discussions: github.com/cloudnative-pag/cloudnative-pg/discussions

Slack: communityinviter.com/apps/cloud-native/cncf

LinkedIn: linkedin.com/company/cloudnative-pa/

Mastodon: @CloudNativePG@mastodon.social
Bluesky: @CloudNativePG.bsky.social

©EDB 2024 — ALL RIGHTS RESERVED.


http://cloudnative-pg.io
http://cloudnative-pg.io/blog/
https://github.com/cloudnative-pg/cloudnative-pg/discussions
http://github.com/cloudnative-pg/cloudnative-pg/discussions
http://github.com/cloudnative-pg/cloudnative-pg/discussions
http://communityinviter.com/apps/cloud-native/cncf
http://linkedin.com/company/cloudnative-pg/
https://mastodon.social/@CloudNativePG
https://bsky.app/profile/cloudnativepg.bsky.social

